EI、Scopus 收录
中文核心期刊
Song Rui, Zheng Haonan, Song Jianwei, Shen Shengping. Advances in top-down multiscale structural design of wood-based material. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(2): 327-346. DOI: 10.6052/0459-1879-23-319
Citation: Song Rui, Zheng Haonan, Song Jianwei, Shen Shengping. Advances in top-down multiscale structural design of wood-based material. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(2): 327-346. DOI: 10.6052/0459-1879-23-319

ADVANCES IN TOP-DOWN MULTISCALE STRUCTURAL DESIGN OF WOOD-BASED MATERIAL

  • Received Date: July 19, 2023
  • Accepted Date: October 07, 2023
  • Available Online: October 08, 2023
  • Published Date: October 08, 2023
  • In the context of the global warming and the "carbon peaking & carbon neutrality" strategy, it is necessary to develop and use wood-based materials as an alternative to traditional structural and functional materials as a means to reduce energy consumption and greenhouse gas emissions, as well as to increase global carbon storage as consequence. Such development and replacement are of great significance for the preservation of the natural environment and for the achievement of a sustainable development in human society. During the past few years, in order to develop and utilize abundant wooden resources and improve the macroscopic performance of traditional wood-based materials, many researchers have been successful in achieving multiscale structural design and control from the microscale to the macroscale in natural wood with a top-down "two-step modification" approach. By modifying wood-based materials in such a way, researchers successfully equipped wood with various excellent macroscopic properties such as high mechanical strength, thus opening up a new field for developing and designing environmentally friendly high-performance wood-based materials that are sustainable and green. On the basis of such a background, this paper presents a review of recent top-down multi-scale structural design strategies for wood-based materials. First of all, there was a brief introduction to the inherent hierarchical structure of natural wood. Then, at microscale, the mechanical behavior and mechanism dominated by cellulose in high-performance wood-based materials were discussed. Subsequently, different strategies for modifying and regulating wood microstructures and the corresponding obtained wood-based materials with different macroscopic properties were reviewed from the perspective of cell wall engineering. Finally, a brief review of the latest developments in functionalized use of wood-based materials was presented. At the end of this paper, a summary of the insufficiency of existing multiscale structural design and modification strategies of wood-based materials was concluded, and the corresponding research prospects were given as potential solutions.
  • [1]
    U.S. Global Change Research Program. Climate Science Special Report: Fourth National Climate Assessment, Volume I. Washington DC, USA, 2017
    [2]
    Harris NL, Gibbs DA, Baccini A, et al. Global maps of twenty-first century forest carbon fluxes. Nature Climate Change, 2021, 11(3): 234-240 doi: 10.1038/s41558-020-00976-6
    [3]
    Claisse PA. Civil Engineering Materials. Butterworth-Heinemann, 2015
    [4]
    新华社. 中共中央 国务院关于完整准确全面贯彻新发展理念做好碳达峰碳中和工作的意见. https://www.gov.cn/zhengce/2021-10/24/content_5644613.htm.2021-10-24

    Xinhua News Agency. Opinions of CCCP and state council on the complete and accurate implementation of the new development philosiphy to achieve carbon peaking and carbon neutrality. https://www.gov.cn/zhengce/2021-10/24/content_5644613.htm.2021-10-24 (in Chinese)
    [5]
    Wimmers GW. A construction material for tall buildings. Nature Reviews Materials, 2017, 2(12): 17051 doi: 10.1038/natrevmats.2017.51
    [6]
    Chen C, Kuang Y, Zhu S, et al. Structure–property–function relationships of natural and engineered wood. Nature Reviews Materials, 2020, 5(9): 642-666 doi: 10.1038/s41578-020-0195-z
    [7]
    Crowther TW, Glick HB, Covey KR, et al. Mapping tree density at aglobal scale. Nature, 2015, 525(7568): 201-205 doi: 10.1038/nature14967
    [8]
    人民日报. 《2021中国林草资源及生态状况》公布. http://www.forestry.gov.cn/main/586/20221129/084459358299794.html.2022-11-29

    People’s Daily. “Forest and grassland resources and ecology situation of China in 2021” was published. http://www.forestry.gov.cn/main/586/20221129/084459358299794.html.2022-11-29 (in Chinese)
    [9]
    FAO. Global production and trade in forest products in 2020. https://www.fao.org/forestry/statistics/80938/en/. 2021-12-24
    [10]
    劳万里, 段新芳, 吕斌等. 碳达峰碳中和目标下木材工业的发展路径分析. 木材科学与技术, 2022, 36(1): 87-91 (Lao Wangli, Duan Xinfang, Lv Bin, et al. Development path of China wood industry under the targets of carbon dioxide emission peaking and carbon neutrality. Chinese Journal of Wood Science and Technology, 2022, 36(1): 87-91 (in Chinese)

    Lao Wangli, Duan Xinfang, Lv Bin, et al. Development path of China wood industry under the targets of carbon dioxide emission peaking and carbon neutrality. Chinese Journal of Wood Science and Technology, 2022, 36(01): 87-91 (in Chinese)
    [11]
    Nordby AS, Shea AD. Building materials in the operational phase. Journal of Industrial Ecology, 2013, 17(5): 763-776 doi: 10.1111/jiec.12046
    [12]
    Churkina G, Organschi A, Reyer CPO, et al. Buildings as a global carbon sink. Nature Sustainability, 2020, 3(4): 269-276 doi: 10.1038/s41893-019-0462-4
    [13]
    Moon RJ, Martini A, Nairn J, et al. Cellulose nanomaterials review: Structure, properties and nanocomposites. Chemical Society Reviews, 2011, 40(7): 3941-3994 doi: 10.1039/c0cs00108b
    [14]
    段博, 张俐娜. 可持续高分子−纤维素新材料研究进展. 高分子学报, 2020, 51(1): 66-86 (Duan Bo, Zhang Lina. Research progress of sustainable polymer – cellulose-based novel material. Acta Polymerica Sinica, 2020, 51(1): 66-86 (in Chinese)

    Duan Bo, Zhang Lina. Research progress of sustainable polymer – cellulose-based novel material. Acta Polymerica Sinica, 2020, 51(1): 66-86 (in Chinese)
    [15]
    Chen Y, Fu J, Dang B, et al. Artificial wooden nacre: A high specific strength engineering material. ACS Nano, 2020, 14(2): 2036-2043 doi: 10.1021/acsnano.9b08647
    [16]
    Guan QF, Yang HB, Han ZM, et al. Lightweight, tough, and sustainable cellulose nanofiber-derived bulk structural materials with low thermal expansion coefficient. Science Advances, 2020, 6(18): eaaz1114 doi: 10.1126/sciadv.aaz1114
    [17]
    Mittal N, Ansari F, Gowda V K, et al. Multiscale control of nanocellulose assembly: Transferring remarkable nanoscale fibril mechanics to macroscale fibers. ACS Nano, 2018, 12(7): 6378-6388
    [18]
    Sun WB, Han ZM, Yue X, et al. Nacre-inspired bacterial cellulose/mica nanopaper with excellent mechanical and electrical insulating properties by biosynthesis. Advanced Materials, 2023, 35(24): e2300241 doi: 10.1002/adma.202300241
    [19]
    Zhu JY, Agarwal UP, Ciesielski PN, et al. Towards sustainable production and utilization of plant-biomass-based nanomaterials: A review and analysis of recent developments. Biotechnology for Biofuels, 2021, 14(1): 114 doi: 10.1186/s13068-021-01963-5
    [20]
    Iglesias MC, Gomez-Maldonado D, Via BK, et al. Pulping processes and their effects on cellulose fibers and nanofibrillated cellulose properties: A review. Forest Products Journal, 2020, 70(1): 10-21 doi: 10.13073/FPJ-D-19-00038
    [21]
    Li J, Chen C, Zhu JY, et al. In situ wood delignification toward sustainable applications. Accounts of Materials Research, 2021, 2(8): 606-620 doi: 10.1021/accountsmr.1c00075
    [22]
    Keplinger T, Wittel FK, Rüggeberg M, et al. Wood derived cellulose scaffolds - processing and mechanics. Advanced Materials, 2021, 33(28): 2001375 doi: 10.1002/adma.202001375
    [23]
    Ding Y, Pang Z, Lan K, et al. Emerging engineered wood for building applications. Chemical Reviews, 2023, 123(5): 1843-1888 doi: 10.1021/acs.chemrev.2c00450
    [24]
    Mao Y, Hu L, Ren ZJ. Engineered wood for asustainable future. Matter, 2022, 5(5): 1326-1329 doi: 10.1016/j.matt.2022.04.013
    [25]
    Chen C, Berglund L, Burgert I, et al. Wood nanomaterials and nanotechnologies. Advanced Materials, 2021, 33(28): 2006207 doi: 10.1002/adma.202006207
    [26]
    Jiang F, Li T, Li Y, et al. Wood‐based nanotechnologies toward sustainability. Advanced Materials, 2017, 30(1): 1703453
    [27]
    Farid T, Rafiq MI, Ali A, et al. Transforming wood as next-generation structural and functional materials for a sustainable future. EcoMat, 2022, 4(1): e12154 doi: 10.1002/eom2.12154
    [28]
    Sjostrom E. Wood Chemistry: Fundamentals and Applications. Elsevier Science, 2013
    [29]
    Ling S, Kaplan DL, Buehler MJ. Nanofibrils in nature and materials engineering. Nature Reviews Materials, 2018, 3(4): 18016 doi: 10.1038/natrevmats.2018.16
    [30]
    Zhu H, Luo W, Ciesielski PN, et al. Wood-derived materials for green electronics, biological devices, and energy applications. Chemical Reviews, 2016, 116(16): 9305-9374 doi: 10.1021/acs.chemrev.6b00225
    [31]
    Gibson LJ, Ashby MF, Harley BA. Cellular Materials in Nature and Medicine. Cambridge: Cambridge University Press, 2010
    [32]
    Meyers MA, Chen PY, Lin AY-M, et al. Biological materials: Structure and mechanical properties. Progress in Materials Science, 2008, 53(1): 1-206 doi: 10.1016/j.pmatsci.2007.05.002
    [33]
    Fratzl P, Weinkamer R. Nature’s hierarchical materials. Progress in Materials Science, 2007, 52(8): 1263-1334 doi: 10.1016/j.pmatsci.2007.06.001
    [34]
    Qing H, Jr Mishnaevsky L. 3D multiscale micromechanical model of wood: From annual rings to microfibrils. International Journal of Solids and Structures, 2010, 47(9): 1253-1267 doi: 10.1016/j.ijsolstr.2010.01.014
    [35]
    Berglund LA, Burgert I. Bioinspired wood nanotechnology for functional materials. Advanced Materials, 2018, 30(19): 1704285 doi: 10.1002/adma.201704285
    [36]
    Gibson LJ. The hierarchical structure and mechanics of plant materials. Journal of the Royal Society Interface, 2012, 9(76): 2749-2766 doi: 10.1098/rsif.2012.0341
    [37]
    Page DH. A method for determining the fibrillar angle in wood tracheids. Journal of Microscopy, 1969, 90(2): 137-143 doi: 10.1111/j.1365-2818.1969.tb00701.x
    [38]
    Barnett JR, Bonham VA. Cellulose microfibril angle in the cell wall of wood fibres. Biological Reviews, 2004, 79(2): 461-472 doi: 10.1017/S1464793103006377
    [39]
    Lichtenegger H, Muller M, Paris O, et al. Imaging of the helical arrangement of cellulose fibrils in wood by synchrotron X-ray microdiffraction. Journal of Applied Crystallography, 1999, 32(6): 1127-1133 doi: 10.1107/S0021889899010961
    [40]
    Dufresne A. Nanocellulose: From Nature to High Performance Tailored Materials. Walter de Gruyter GmbH & Co KG, 2017
    [41]
    Habibi Y, Lucia LA, Rojas OJ. Cellulose nanocrystals: Chemistry, self-assembly, and applications. Chemical Reviews, 2010, 110(6): 3479-3500 doi: 10.1021/cr900339w
    [42]
    Lu F. Lignin. Nova Science Publishers, Incorporated, 2019
    [43]
    Lu F, Ralph J. Lignin//Cereal Straw as a Resource for Sustainable Biomaterials and Biofuels. Sun RC ed. Amsterdam: Elsevier, 2010: 169-207
    [44]
    Rao J, Lyu Z, Chen G, et al. Hemicellulose: Structure, chemical modification, and application. Progress in Polymer Science, 2023, 140: 101675 doi: 10.1016/j.progpolymsci.2023.101675
    [45]
    Fratzl P. Cellulose and collagen: from fibres to tissues. Current Opinion in Colloid & Interface Science, 2003, 8(1): 32-39
    [46]
    Yano H, Hirose A, Inaba S. High-strength wood-based materials. Journal of Materials Science Letters, 1997, 16(23): 1906-1909 doi: 10.1023/A:1018578431873
    [47]
    Mark RE. Cell Wall Mechanics of Tracheids. New Haven, CT: Yale University Press, 1967
    [48]
    Rowell RM. Handbook of Wood Chemistry and Wood Composites. CRC Press, 2005
    [49]
    Reiterer A, Lichtenegger H, Tschegg S, et al. Experimental evidence for a mechanical function of the cellulose microfibril angle in wood cell walls. Philosophical Magazine A, 1999, 79(9): 2173-2184 doi: 10.1080/01418619908210415
    [50]
    Cai P, Wang C, Gao H, et al. Mechanomaterials: A rational deployment of forces and geometries in programming functional materials. Advanced Materials, 2021, 33(46): 2007977
    [51]
    Hill CAS. Wood Modification: Chemical, Thermal and Other Processes. Wiley, 2007
    [52]
    Homan WJ, Jorissen AJ M. Wood modification developments. Heron, 2004, 49(4): 361-385
    [53]
    Hou Y, Xia J, He Z, et al. Molecular levers enable anomalously enhanced strength and toughness of cellulose nanocrystal at cryogenic temperature. Nano Research, 2023, 16: 8036-8041
    [54]
    Hou Y, He Z, Zhu Y, et al. Intrinsic kink deformation in nanocellulose. Carbohydrate Polymers, 2021, 273: 118578 doi: 10.1016/j.carbpol.2021.118578
    [55]
    何泽洲. 非共价界面层状纳米复合材料的多尺度力学与设计. [博士论文]. 合肥: 中国科学技术大学, 2021

    He Zezhou. Multiscale mechanics and design of noncovalent interface layered nanocomposite. [PhD Thesis]. Hefei: University of Science and Technolygy of China, 2021 (in Chinese)
    [56]
    Li T. EML webinar overview: Advanced materials toward a sustainable future—mechanics design. Extreme Mechanics Letters, 2021, 42: 101107 doi: 10.1016/j.eml.2020.101107
    [57]
    Zhu H, Zhu S, Jia Z, et al. Anomalous scaling law of strength and toughness of cellulose nanopaper. Proceedings of the National Academy of Sciences, 2015, 112(29): 8971-8976 doi: 10.1073/pnas.1502870112
    [58]
    Sinko R, Keten S. Traction–separation laws and stick–slip shear phenomenon of interfaces between cellulose nanocrystals. Journal of the Mechanics and Physics of Solids, 2015, 78: 526-539 doi: 10.1016/j.jmps.2015.02.012
    [59]
    Meng Q, Shi X. A microstructure-based constitutive model of anisotropic cellulose nanopaper with aligned nanofibers. Extreme Mechanics Letters, 2021, 43: 101158 doi: 10.1016/j.eml.2020.101158
    [60]
    Meng Q, Li B, Li T, et al. Effects of nanofiber orientations on the fracture toughness of cellulose nanopaper. Engineering Fracture Mechanics, 2018, 194: 350-361 doi: 10.1016/j.engfracmech.2018.03.034
    [61]
    Meng Q, Li B, Li T, et al. A multiscale crack-bridging model of cellulose nanopaper. Journal of the Mechanics and Physics of Solids, 2017, 103: 22-39
    [62]
    Chen Q, Chen B, Jing S, et al. Flaw sensitivity of cellulose paper. Extreme Mechanics Letters, 2022, 56: 101865 doi: 10.1016/j.eml.2022.101865
    [63]
    He Z, Zhu Y, Wu H. A universal mechanical framework for noncovalent interface in laminated nanocomposites. Journal of the Mechanics and Physics of Solids, 2022, 158: 104560 doi: 10.1016/j.jmps.2021.104560
    [64]
    Solhi L, Guccini V, Heise K, et al. Understanding nanocellulose-water interactions: Turning a detriment into an asset. Chemical Reviews, 2023, 123(5): 1925-2015 doi: 10.1021/acs.chemrev.2c00611
    [65]
    Zhang C, Chen M, Keten S, et al. Hygromechanical mechanisms of wood cell wall revealed by molecular modeling and mixture rule analysis. Science Advances, 2021, 7(37): eabi8919 doi: 10.1126/sciadv.abi8919
    [66]
    Jin K, Qin Z, Buehler MJ. Molecular deformation mechanisms of the wood cell wall material. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 42: 198-206 doi: 10.1016/j.jmbbm.2014.11.010
    [67]
    Kulasinski K, Derome D, Carmeliet J. Impact of hydration on the micromechanical properties of the polymer composite structure of wood investigated with atomistic simulations. Journal of the Mechanics and Physics of Solids, 2017, 103: 221-235 doi: 10.1016/j.jmps.2017.03.016
    [68]
    Hou Y, Guan QF, Xia J, et al. Strengthening and toughening hierarchical nanocellulose via humidity-mediated interface. ACS Nano, 2021, 15(1): 1310-1320 doi: 10.1021/acsnano.0c08574
    [69]
    Zhang Y, Yu J, Wang X, et al. Molecular insights into the complex mechanics of plant epidermal cell walls. Science, 2021, 372(6543): 706-711 doi: 10.1126/science.abf2824
    [70]
    Qin X, Feng S, Meng Z, et al. Optimizing the mechanical properties of cellulose nanopaper through surface energy and critical length scale considerations. Cellulose, 2017, 24(8): 3289-3299 doi: 10.1007/s10570-017-1367-x
    [71]
    Ray U, Pang Z, Li T. Mechanics of cellulose nanopaper using a scalable coarse-grained modeling scheme. Cellulose, 2021, 28(6): 3359-3372 doi: 10.1007/s10570-021-03740-x
    [72]
    Shishehbor M, Zavattieri PD. Effects of interface properties on the mechanical properties of bio-inspired cellulose nanocrystal (CNC)-based materials. Journal of the Mechanics and Physics of Solids, 2019, 124: 871-896 doi: 10.1016/j.jmps.2018.12.002
    [73]
    Wang X, Pang Z, Chen C, et al. All-natural, degradable, rolled-up straws based on cellulose micro- and nano-hybrid fibers. Advanced Functional Materials, 2020, 30(22): 1910417 doi: 10.1002/adfm.201910417
    [74]
    Pařil P, Brabec M, Maňák O, et al. Comparison of selected physical and mechanical properties of densified beech wood plasticized by ammonia and saturated steam. European Journal of Wood and Wood Products, 2014, 72(5): 583-591 doi: 10.1007/s00107-014-0814-8
    [75]
    Fang CH, Mariotti N, Cloutier A, et al. Densification of wood veneers by compression combined with heat and steam. European Journal of Wood and Wood Products, 2012, 70(1): 155-163
    [76]
    Bekhta P, Hiziroglu S, Shepelyuk O. Properties of plywood manufactured from compressed veneer as building material. Materials & Design, 2009, 30(4): 947-953
    [77]
    Stamm AJ, Seborg RM. Resin-treated, laminated, compressed wood. 1941
    [78]
    Sotayo A, Bradley D, Bather M, et al. Review of state of the art of dowel laminated timber members and densified wood materials as sustainable engineered wood products for construction and building applications. Developments in the Built Environment, 2020, 1: 100004 doi: 10.1016/j.dibe.2019.100004
    [79]
    Song J, Chen C, Zhu S, et al. Processing bulk natural wood into a high-performance structural material. Nature, 2018, 554(7691): 224-228 doi: 10.1038/nature25476
    [80]
    Han X, Ye Y, Lam F, et al. Hydrogen-bonding-induced assembly of aligned cellulose nanofibers into ultrastrong and tough bulk materials. Journal of Materials Chemistry A, 2019, 7(47): 27023-27031 doi: 10.1039/C9TA11118B
    [81]
    Frey M, Widner D, Segmehl JS, et al. Delignified and densified cellulose bulk materials with excellent tensile properties for sustainable engineering. ACS Applied Materials & Interfaces, 2018, 10(5): 5030-5037
    [82]
    He S, Chen C, Li T, et al. An energy-efficient, wood-derived structural material enabled by pore structure engineering towards building efficiency. Small Methods, 2020, 4(1): 1900747 doi: 10.1002/smtd.201900747
    [83]
    Zhu M, Wang Y, Zhu S, et al. Anisotropic, transparent films with aligned cellulose nanofibers. Advanced Materials, 2017, 29(21): 1606284 doi: 10.1002/adma.201606284
    [84]
    Gan W, Chen C, Kim HT, et al. Single-digit-micrometer thickness wood speaker. Nature Communications, 2019, 10(1): 5084 doi: 10.1038/s41467-019-13053-0
    [85]
    Gan W, Chen C, Wang Z, et al. Dense, self-formed char layer enables a fire-retardant wood structural material. Advanced Functional Materials, 2019, 29(14): 1807444 doi: 10.1002/adfm.201807444
    [86]
    Chen B, Leiste UH, Fourney WL, et al. Hardened wood as a renewable alternative to steel and plastic. Matter, 2021, 4(12): 3941-3952 doi: 10.1016/j.matt.2021.09.020
    [87]
    Fang Z, Li B, Liu Y, et al. Critical role of degree of polymerization of cellulose in super-strong nanocellulose films. Matter, 2020, 2(4): 1000-1014 doi: 10.1016/j.matt.2020.01.016
    [88]
    Li Z, Chen C, Mi R, et al. A strong, tough, and scalable structural material from fast-growing bamboo. Advanced Materials, 2020, 32(10): 1906308 doi: 10.1002/adma.201906308
    [89]
    Xiao S, Chen C, Xia Q, et al. Lightweight, strong, moldable wood via cell wall engineering as a sustainable structural material. Science, 2021, 374(6566): 465-471 doi: 10.1126/science.abg9556
    [90]
    Luo D, Maheshwari A, Danielescu A, et al. Autonomous self-burying seed carriers for aerial seeding. Nature, 2023, 614(7948): 463-470 doi: 10.1038/s41586-022-05656-3
    [91]
    Khakalo A, Tanaka A, Korpela A, et al. All-wood composite material by partial fiber surface dissolution with an ionic liquid. ACS Sustainable Chemistry & Engineering, 2019, 7(3): 3195-3202
    [92]
    Khakalo A, Tanaka A, Korpela A, et al. Delignification and ionic liquid treatment of wood toward multifunctional high-performance structural materials. ACS Applied Materials & Interfaces, 2020, 12(20): 23532-23542
    [93]
    Li Y, Vasileva E, Sychugov I, et al. Optically transparent wood: Recent progress, opportunities, and challenges. Advanced Optical Materials, 2018, 6(14): 1800059 doi: 10.1002/adom.201800059
    [94]
    Wang K, Dong Y, Ling Z, et al. Transparent wood developed by introducing epoxy vitrimers into a delignified wood template. Composites Science and Technology, 2021, 207: 108690 doi: 10.1016/j.compscitech.2021.108690
    [95]
    Kong W, Wang C, Jia C, et al. Muscle-inspired highly anisotropic, strong, ion-conductive hydrogels. Advanced Materials, 2018, 30(39): 1801934 doi: 10.1002/adma.201801934
    [96]
    Chen C, Wang Y, Wu Q, et al. Highly strong and flexible composite hydrogel reinforced by aligned wood cellulose skeleton via alkali treatment for muscle-like sensors. Chemical Engineering Journal, 2020, 400: 125876 doi: 10.1016/j.cej.2020.125876
    [97]
    Shams MI, Yano H, Endou K. Compressive deformation of wood impregnated with low molecular weight phenol formaldehyde (PF) resin III: Effects of sodium chlorite treatment. Journal of Wood Science, 2005, 51(3): 234-238 doi: 10.1007/s10086-004-0638-y
    [98]
    Shams MI, Yano H, Endou K. Compressive deformation of wood impregnated with low molecular weight phenol formaldehyde (PF) resin I: Effects of pressing pressure and pressure holding. Journal of Wood Science, 2004, 50(4): 337-342 doi: 10.1007/s10086-003-0570-6
    [99]
    Shams MI, Yano H. A new method for obtaining high strength phenol formaldehyde resin-impregnated wood composites at low pressing pressure. Journal of Tropical Forest Science, 2009, 21: 175-180
    [100]
    Yano H. Potential strength for resin-impregnated compressed wood. Journal of Materials Science Letters, 2001, 20(12): 1127-1129 doi: 10.1023/A:1010996424453
    [101]
    Frey M, Schneider L, Masania K, et al. Delignified wood–polymer interpenetrating composites exceeding the rule of mixtures. ACS Applied Materials & Interfaces, 2019, 11(38): 35305-35311
    [102]
    Li T, Zhu M, Yang Z, et al. Wood composite as an energy efficient building material: Guided sunlight transmittance and effective thermal insulation. Advanced Energy Materials, 2016, 6(22): 1601122
    [103]
    Fink S. Transparent wood – a new approach in the functional study of wood structure. 1992, 46(5): 403-408
    [104]
    Mi R, Chen C, Keplinger T, et al. Scalable aesthetic transparent wood for energy efficient buildings. Nature Communications, 2020, 11(1): 3836 doi: 10.1038/s41467-020-17513-w
    [105]
    Mi R, Li T, Dalgo D, et al. A clear, strong, and thermally insulated transparent wood for energy efficient windows. Advanced Functional Materials, 2020, 30(1): 1907511 doi: 10.1002/adfm.201907511
    [106]
    Zhu M, Song J, Li T, et al. Highly anisotropic, highly transparent wood composites. Advanced Materials, 2016, 28(26): 5181-5187 doi: 10.1002/adma.201600427
    [107]
    Yu Z, Yao Y, Yao J, et al. Transparent wood containing Cs xWO3 nanoparticles for heat-shielding window applications. Journal of Materials Chemistry A, 2017, 5(13): 6019-6024 doi: 10.1039/C7TA00261K
    [108]
    Zhu M, Li T, Davis CS, et al. Transparent and haze wood composites for highly efficient broadband light management in solar cells. Nano Energy, 2016, 26: 332-339 doi: 10.1016/j.nanoen.2016.05.020
    [109]
    Jia C, Chen C, Mi R, et al. Clear wood toward high-performance building materials. ACS Nano, 2019, 13(9): 9993-10001 doi: 10.1021/acsnano.9b00089
    [110]
    Li Y, Fu Q, Yu S, et al. Optically transparent wood from a nanoporous cellulosic template: Combining functional and structural performance. Biomacromolecules, 2016, 17(4): 1358-1364 doi: 10.1021/acs.biomac.6b00145
    [111]
    Li Y, Yu S, Veinot JG C, et al. Luminescent transparent wood. Advanced Optical Materials, 2017, 5(1): 1600834 doi: 10.1002/adom.201600834
    [112]
    Li Y, Yang X, Fu Q, et al. Towards centimeter thick transparent wood through interface manipulation. Journal of Materials Chemistry A, 2018, 6(3): 1094-1101 doi: 10.1039/C7TA09973H
    [113]
    Xia Q, Chen C, Li T, et al. Solar-assisted fabrication of large-scale, patternable transparent wood. Science Advances, 2021, 7(5): eabd7342 doi: 10.1126/sciadv.abd7342
    [114]
    Xia Q, Chen C, Yao Y, et al. In situ lignin modification toward photonic wood. Advanced Materials, 2021, 33(8): 2001588 doi: 10.1002/adma.202001588
    [115]
    Li Y, Fu Q, Rojas R, et al. Lignin-retaining transparent wood. Chem Sus Chem, 2017, 10(17): 3445-3451 doi: 10.1002/cssc.201701089
    [116]
    Zhu M, Jia C, Wang Y, et al. Isotropic paper directly from anisotropic wood: Top-down green transparent substrate toward biodegradable electronics. ACS Applied Materials & Interfaces, 2018, 10(34): 28566-28571
    [117]
    Li K, Wang S, Chen H, et al. Self-densification of highly mesoporous wood structure into a strong and transparent film. Advanced Materials, 2020, 32(42): 2003653 doi: 10.1002/adma.202003653
    [118]
    Chen C, Zhou T, Wan Z, et al. Insulative biobased glaze from wood laminates obtained by self-adhesion. Small, 2023, 19(38): 2301472
    [119]
    Song J, Chen C, Wang C, et al. Superflexible wood. ACS Applied Materials & Interfaces, 2017, 9(28): 23520-23527
    [120]
    Jia C, Li T, Chen C, et al. Scalable, anisotropic transparent paper directly from wood for light management in solar cells. Nano Energy, 2017, 36: 366-373 doi: 10.1016/j.nanoen.2017.04.059
    [121]
    Fu Q, Chen Y, Sorieul M. Wood-based flexible electronics. ACS Nano, 2020, 14(3): 3528-3538 doi: 10.1021/acsnano.9b09817
    [122]
    Chen C, Song J, Cheng J, et al. Highly elastic hydrated cellulosic materials with durable compressibility and tunable conductivity. ACS Nano, 2020, 14(12): 16723-16734 doi: 10.1021/acsnano.0c04298
    [123]
    Garemark J, Perea-Buceta JE, Felhofer M, et al. Strong, shape-memory lignocellulosic aerogel via wood cell wall nanoscale reassembly. ACS Nano, 2023, 17(5): 4775-4789 doi: 10.1021/acsnano.2c11220
    [124]
    Song J, Chen C, Yang Z, et al. Highly compressible, anisotropic aerogel with aligned cellulose nanofibers. ACS Nano, 2018, 12(1): 140-147 doi: 10.1021/acsnano.7b04246
    [125]
    Wang K, Liu X, Tan Y, et al. Two-dimensional membrane and three-dimensional bulk aerogel materials via top-down wood nanotechnology for multibehavioral and reusable oil/water separation. Chemical Engineering Journal, 2019, 371: 769-780 doi: 10.1016/j.cej.2019.04.108
    [126]
    Chen C, Song J, Zhu S, et al. Scalable and sustainable approach toward highly compressible, anisotropic, lamellar carbon sponge. Chem, 2018, 4(3): 544-554 doi: 10.1016/j.chempr.2017.12.028
    [127]
    Guan H, Cheng Z, Wang X. Highly compressible wood sponges with a spring-like lamellar structure as effective and reusable oil absorbents. ACS Nano, 2018, 12(10): 10365-10373 doi: 10.1021/acsnano.8b05763
    [128]
    Han ZM, Sun WB, Yang KP, et al. An all-natural wood-inspired aerogel. Angewandte Chemie International Edition, 2023, 62(6): e202211099 doi: 10.1002/anie.202211099
    [129]
    Li X, Jin X, Wu Y, et al. A comprehensive review of lignocellulosic biomass derived materials for water/oil separation. Science of the Total Environment, 2023, 876: 162549 doi: 10.1016/j.scitotenv.2023.162549
    [130]
    Li T, Song J, Zhao X, et al. Anisotropic, lightweight, strong, and super thermally insulating nanowood with naturally aligned nanocellulose. Science Advances, 2018, 4(3): eaar3724 doi: 10.1126/sciadv.aar3724
    [131]
    Li T, Zhai Y, He S, et al. A radiative cooling structural material. Science, 2019, 364(6442): 760-763 doi: 10.1126/science.aau9101
    [132]
    Xu J, Yang T, Xu X, et al. Processing solid wood into a composite phase change material for thermal energy storage by introducing silica-stabilized polyethylene glycol. Composites Part A: Applied Science and Manufacturing, 2020, 139: 106098 doi: 10.1016/j.compositesa.2020.106098
    [133]
    Gan W, Chen C, Wang Z, et al. Fire-resistant structural material enabled by an anisotropic thermally conductive hexagonal boron nitride coating. Advanced Functional Materials, 2020, 30(10): 1909196 doi: 10.1002/adfm.201909196
    [134]
    Fu Q, Medina L, Li Y, et al. Nanostructured wood hybrids for fire-retardancy prepared by clay impregnation into the cell wall. ACS Applied Materials & Interfaces, 2017, 9(41): 36154-36163
    [135]
    Chen L, Song N, Shi L, et al. Anisotropic thermally conductive composite with wood-derived carbon scaffolds. Composites Part A:Applied Science and Manufacturing, 2018, 112: 18-24 doi: 10.1016/j.compositesa.2018.05.023
    [136]
    Wan J, Song J, Yang Z, et al. Highly anisotropic conductors. Advanced Materials, 2017, 29(41): 1703331 doi: 10.1002/adma.201703331
    [137]
    Chen C, Hu L. Nanocellulose toward advanced energy storage devices: Structure and electrochemistry. Accounts of Chemical Research, 2018, 51(12): 3154-3165 doi: 10.1021/acs.accounts.8b00391
    [138]
    Shen F, Luo W, Dai J, et al. Ultra-thick, low-tortuosity, and mesoporous wood carbon anode for high-performance sodium-ion batteries. Advanced Energy Materials, 2016, 6(14): 1600377 doi: 10.1002/aenm.201600377
    [139]
    Peng X, Zhang L, Chen Z, et al. Hierarchically porous carbon plates derived from wood as bifunctional ORR/OER electrodes. Advanced Materials, 2019, 31(16): 1900341 doi: 10.1002/adma.201900341
    [140]
    Chen C, Xu S, Kuang Y, et al. Nature-inspired tri-pathway design enabling high-performance flexible Li–O2 batteries. Advanced Energy Materials, 2019, 9(9): 1802964 doi: 10.1002/aenm.201802964
    [141]
    Song H, Xu S, Li Y, et al. Hierarchically porous, ultrathick, “breathable” wood-derived cathode for lithium-oxygen batteries. Advanced Energy Materials, 2018, 8(4): 1701203 doi: 10.1002/aenm.201701203
    [142]
    Zhang Y, Luo W, Wang C, et al. High-capacity, low-tortuosity, and channel-guided lithium metal anode. Proceedings of the National Academy of Sciences, 2017, 114(14): 3584-3589 doi: 10.1073/pnas.1618871114
    [143]
    Chen C, Zhang Y, Li Y, et al. Highly conductive, lightweight, low-tortuosity carbon frameworks as ultrathick 3 D current collectors. Advanced Energy Materials, 2017, 7(17): 1700595 doi: 10.1002/aenm.201700595
    [144]
    Tran VC, Mastantuoni GG, Zabihipour M, et al. Electrical current modulation in wood electrochemical transistor. Proceedings of the National Academy of Sciences, 2023, 120(18): e2218380120
    [145]
    Li T, Li SX, Kong W, et al. A nanofluidic ion regulation membrane with aligned cellulose nanofibers. Science Advances, 2019, 5(2): eaau4238 doi: 10.1126/sciadv.aau4238
    [146]
    Zhao J, Zhang W, Liu T, et al. Hierarchical porous cellulosic triboelectric materials for extreme environmental conditions. Small Methods, 2022, 6(9): 2200664 doi: 10.1002/smtd.202200664
    [147]
    Wu QY, Wang C, Wang R, et al. Salinity-gradient power generation with ionized wood membranes. Advanced Energy Materials, 2019, 10(1): 1902590
    [148]
    Sun J, Guo H, Schädli GN, et al. Enhanced mechanical energy conversion with selectively decayed wood. Science Advances, 2021, 7(11): eabd9138 doi: 10.1126/sciadv.abd9138
    [149]
    Sun J, Guo H, Ribera J, et al. Sustainable and biodegradable wood sponge piezoelectric nanogenerator for sensing and energy harvesting applications. ACS Nano, 2020, 14(11): 14665-14674 doi: 10.1021/acsnano.0c05493
    [150]
    Cai C, Mo J, Lu Y, et al. Integration of a porous wood-based triboelectric nanogenerator and gas sensor for real-time wireless food-quality assessment. Nano Energy, 2021, 83: 105833 doi: 10.1016/j.nanoen.2021.105833
    [151]
    Chen C, Li Y, Song J, et al. Highly flexible and efficient solar steam generation device. Advanced Materials, 2017, 29(30): 1701756 doi: 10.1002/adma.201701756
    [152]
    Zhu M, Li Y, Chen F, et al. Plasmonic wood for high-efficiency solar steam generation. Advanced Energy Materials, 2018, 8(4): 1701028 doi: 10.1002/aenm.201701028
    [153]
    Chen X, He S, Falinski MM, et al. Sustainable off-grid desalination of hypersaline waters using janus wood evaporators. Energy & Environmental Science, 2021, 14(10): 5347-5357
    [154]
    He S, Chen C, Chen G, et al. High-performance, scalable wood-based filtration device with a reversed-tree design. Chemistry of Materials, 2020, 32(5): 1887-1895 doi: 10.1021/acs.chemmater.9b04516
    [155]
    Liu KK, Jiang Q, Tadepalli S, et al. Wood–graphene oxide composite for highly efficient solar steam generation and desalination. ACS Applied Materials & Interfaces, 2017, 9(8): 7675-7681
    [156]
    Chen F, Gong AS, Zhu M, et al. Mesoporous, three-dimensional wood membrane decorated with nanoparticles for highly efficient water treatment. ACS Nano, 2017, 11(4): 4275-4282 doi: 10.1021/acsnano.7b01350
    [157]
    Zhang W, Xu C, Che X, et al. Encapsulating amidoximated nanofibrous aerogels within wood cell tracheids for efficient cascading adsorption of uranium ions. ACS Nano, 2022, 16(8): 13144-13151 doi: 10.1021/acsnano.2c06173
    [158]
    Chen G, Li T, Chen C, et al. A highly conductive cationic wood membrane. Advanced Functional Materials, 2019, 29(44): 1902772 doi: 10.1002/adfm.201902772
  • Related Articles

    [1]Xu Bo, Yu Chao, Wang Chong, Kan Qianhua, Wang Qingyuan, Kang Guozheng. PHASE-FIELD SIMULATION ON THE FUNCTIONAL PROPERTIES OF STRESS-ASSISTED AGING NiTi SHAPE MEMORY ALLOYS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(12): 3507-3520. DOI: 10.6052/0459-1879-24-273
    [2]Huang Xinyu, Tang Huayuan, Wang Lei. RECENT PROGRESS ON SOME FUNDAMENTAL MECHANICAL PROPERTIES OF TPMS STRUCTURES BASED ON ADDITIVE MANUFACTURING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(11): 3099-3115. DOI: 10.6052/0459-1879-24-205
    [3]Cheng Qian, Yin Jianfei, Wen Jihong, Yu Dianlong. QUASI-STATIC AND DYNAMIC MECHANICAL PROPERTIES OF FUNCTIONALLY GRADED TRIPLY PERIODIC MINIMAL SURFACE STRUCTURES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(9): 2646-2658. DOI: 10.6052/0459-1879-24-155
    [4]Chen Zekun, Jiang Jiaxi, Wang Yujia, Zeng Yongpan, Gao Jie, Li Xiaoyan. DEFECTS, MICROSTRUCTURES AND MECHANICAL PROPERTIES OF MATERIALS FABRICATED BY METAL ADDITIVE MANUFACTURING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(12): 3190-3205. DOI: 10.6052/0459-1879-21-472
    [5]Li Dongbo, Liu Qinlong, Zhang Hongchi, Lei Pengbo, Zhao Dong. STUDY ON TENSILE FRACTURE BEHAVIOR AND MECHANICAL PROPERTIES OF GO BASED ON MOLECULAR DYNAMICS METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(5): 1393-1402. DOI: 10.6052/0459-1879-19-175
    [6]Hua Jun, Hou Yan, Duan Zhirong, He Yu. STUDY ON IRRADIATION DAMAGE AND MECHANICAL PROPERTY OF GRAPHENE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(5): 1080-1087. DOI: 10.6052/0459-1879-16-015
    [7]Wang Xinjie, Wu Yanqing, Huang Fenglei. NANOINDENTATION EXPERIMENTS AND SIMULATIONS STUDIES ON MECHANICAL RESPONSES OF ENERGETIC CRYSTALS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(1): 95-104. DOI: 10.6052/0459-1879-14-160
    [8]Zhu Jianguo, Xie Huimin, Liu Zhanwei. RESEARCH PROGRESS ON THE EXPERIMENTAL MEASUREMENT METHODS OF MECHANICAL PROPERTIES OF THERMAL BARRIER COATINGS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(1): 45-60. DOI: 10.6052/0459-1879-12-080
    [9]Kan Jin, Wang Jianxiang. A MECHANICAL MODEL OF POROUS MEDIA AND ITS APPLICATION IN CEMENT MATERIALS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(6): 1066-1070. DOI: 10.6052/0459-1879-12-053
    [10]Bo Zou, Zixing Lu. Effective mechanical properties of solid filled by hollow nanospheres[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(2): 265-273. DOI: 10.6052/0459-1879-2009-2-2008-214

Catalog

    Article Metrics

    Article views (575) PDF downloads (126) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return