Processing math: 100%
EI、Scopus 收录
中文核心期刊
Cui Yuankai, Zhang Huan. Study of the effects of inter-particle collisions on particle accumulation in turbulent channel flows. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(2): 365-376. DOI: 10.6052/0459-1879-23-283
Citation: Cui Yuankai, Zhang Huan. Study of the effects of inter-particle collisions on particle accumulation in turbulent channel flows. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(2): 365-376. DOI: 10.6052/0459-1879-23-283

STUDY OF THE EFFECTS OF INTER-PARTICLE COLLISIONS ON PARTICLE ACCUMULATION IN TURBULENT CHANNEL FLOWS

  • Received Date: July 01, 2023
  • Accepted Date: September 21, 2023
  • Available Online: September 22, 2023
  • Published Date: September 22, 2023
  • Particle-laden turbulence is common in natural phenomena and industrial flows, closely related to human life and production activities. In general, when the volume fraction of particles is less than O(104), inter-particle collisions are neglected. Some studies have found that in particle-laden wall turbulence, even at low volume fractions, the effects of turbophoresis and preferential concentration can lead to higher local particle concentrations and frequent particle collisions. However, most existing results focus on homogeneous isotropic turbulence or employ large eddy simulations, and there is a lack of direct numerical simulation studies on particle-laden turbulent channel flows. The quantitative relationship between inter-particle collisions and the degree and morphology of particle clustering remains unclear. In this study, based on the Euler-Lagrangian point-particle framework, at a friction Reynolds number of Reτ=180, we conducted direct numerical simulations to investigate the differences in the accumulation patterns of bidisperse particles in horizontal turbulent channel flows with and without inter-particle collisions. The average mass fraction of particles in the simulations is ˉϕmO(1), so the feedback of particles on the flow field is also considered in the model. We found that inter-particle collisions drive near-wall particles to migrate towards the center of the channel, resulting in a flattened wall-normal profile of the average particle concentration, which suppresses particle turbophoresis in wall turbulence. Meanwhile, inter-particle collisions lead to a more uniform distribution of particles within a horizontal thin layer parallel to the wall. In particular, within the viscous sublayer, the anisotropic particle streak structures completely disappear. These results indicate that inter-particle collisions significantly suppress particle turbophoresis and near-wall preferential concentration phenomena in horizontal channel turbulence.
  • [1]
    Zheng X. Mechanics of Wind-Blown Sand Movements. Springer Science & Business Media, 2009
    [2]
    Zhang LS, Tao JJ, Wang GH, et al. Experimental study on the origin of lobe-cleft structures in a sand storm. Acta Mechanica Sinica English Series, 2021, 37(1): 7
    [3]
    Zhang H, Zhou YH. Unveiling the spectrum of electrohydrodynamic turbulence in dust storms. Nature Communications, 2023, 14(1): 408 doi: 10.1038/s41467-023-36041-x
    [4]
    Sippola P, Kolehmainen J, Ozel A, et al. Experimental and numerical study of wall layer development in a tribocharged fluidized bed. Journal of Fluid Mechanics, 2018, 849: 860-884 doi: 10.1017/jfm.2018.412
    [5]
    郑晓静, 王国华. 高雷诺数壁湍流的研究进展及挑战. 力学进展, 2020, 50(1): 202001 (Zheng Xiaojing, Wang Guohua. Research progress and challenges of high Reynolds number wall turbulence. Advances in Mechanics, 2020, 50(1): 202001 (in Chinese)

    Zheng Xiaojing, Wang Guohua. Research Progress and Challenges of High Reynolds number Wall Turbulence. Advances In Mechanics, 2020, 50 (1), 202001 (in Chinese))
    [6]
    郑晓静. 关于极端力学. 力学学报, 2019, 51(4): 1266-1272 (Zheng Xiaojing. On extreme mechanics. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1266-1272 (in Chinese)

    Zheng Xiaojing. On Extreme Mechanics. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51 (4), 1266-1272 (in Chinese))
    [7]
    Zhang H, Tan X, Zheng X. Multifield intermittency of dust storm turbulence in the atmospheric surface layer. Journal of Fluid Mechanics, 2023, 963: A15 doi: 10.1017/jfm.2023.278
    [8]
    Brandt L, Coletti F. Particle-laden turbulence: progress and perspectives. Annual Review of Fluid Mechanics, 2022, 54: 159-189 doi: 10.1146/annurev-fluid-030121-021103
    [9]
    Zhang H, Zhou YH. Reconstructing the electrical structure of dust storms from locally observed electric field data. Nature Communications, 2020, 11(1): 5072 doi: 10.1038/s41467-020-18759-0
    [10]
    Dhariwal R, Bragg AD. Small-scale dynamics of settling, bidisperse particles in turbulence. Journal of Fluid Mechanics, 2018, 839: 594-620 doi: 10.1017/jfm.2018.24
    [11]
    Maxey M. Simulation methods for particulate flows and concentrated suspensions. Annual Review of Fluid Mechanics, 2017, 49: 171-193 doi: 10.1146/annurev-fluid-122414-034408
    [12]
    Zheng X, Wang G, Zhu W. Experimental study on the effects of particle–wall interactions on VLSM in sand-laden flows. Journal of Fluid Mechanics, 2021, 914: A35 doi: 10.1017/jfm.2021.16
    [13]
    Li J, Wang H, Liu Z, et al. An experimental study on turbulence modification in the near-wall boundary layer of a dilute gas-particle channel flow. Experiments in Fluids, 2012, 53(5): 1385-1403 doi: 10.1007/s00348-012-1364-7
    [14]
    Wang S, Vanella M, Balaras E. A hydrodynamic stress model for simulating turbulence/particle interactions with immersed boundary methods. Journal of Computational Physics, 2019, 382: 240-263 doi: 10.1016/j.jcp.2019.01.010
    [15]
    Jie Y, Cui Z, Xu C, et al. On the existence and formation of multi-scale particle streaks in turbulent channel flows. Journal of Fluid Mechanics, 2022, 935: A18 doi: 10.1017/jfm.2022.8
    [16]
    Li D, Luo K, Fan J. Modulation of turbulence by dispersed solid particles in a spatially developing flat-plate boundary layer. Journal of Fluid Mechanics, 2016, 802: 359-394 doi: 10.1017/jfm.2016.406
    [17]
    Shao X, Wu T, Yu Z. Fully resolved numerical simulation of particle-laden turbulent flow in a horizontal channel at a low Reynolds number. Journal of Fluid Mechanics, 2012, 693: 319-344 doi: 10.1017/jfm.2011.533
    [18]
    Caporaloni M, Tampieri F, Trombetti F, et al. Transfer of particles in nonisotropic air turbulence. Journal of Atmospheric Sciences, 1975, 32(3): 565-568 doi: 10.1175/1520-0469(1975)032<0565:TOPINA>2.0.CO;2
    [19]
    Reeks MW. The transport of discrete particles in inhomogeneous turbulence. Journal of Aerosol Science, 1983, 14(6): 729-739 doi: 10.1016/0021-8502(83)90055-1
    [20]
    Soldati A, Marchioli C. Physics and modelling of turbulent particle deposition and entrainment: Review of a systematic study. International Journal of Multiphase Flow, 2009, 35(9): 827-839 doi: 10.1016/j.ijmultiphaseflow.2009.02.016
    [21]
    Sardina G, Schlatter P, Brandt L, et al. Wall accumulation and spatial localization in particle-laden wall flows. Journal of Fluid Mechanics, 2012, 699: 50-78 doi: 10.1017/jfm.2012.65
    [22]
    Wang LP, Wexler AS, Zhou Y. Statistical mechanical description and modelling of turbulent collision of inertial particles. Journal of Fluid Mechanics, 2000, 415: 117-153 doi: 10.1017/S0022112000008661
    [23]
    Yamamoto Y, Potthoff M, Tanaka T, et al. Large-eddy simulation of turbulent gas–particle flow in a vertical channel: effect of considering inter-particle collisions. Journal of Fluid Mechanics, 2001, 442: 303-334 doi: 10.1017/S0022112001005092
    [24]
    Motoori Y, Wong CK, Goto S. Role of the hierarchy of coherent structures in the transport of heavy small particles in turbulent channel flow. Journal of Fluid Mechanics, 2022, 942: A3 doi: 10.1017/jfm.2022.327
    [25]
    Oka S, Goto S. Generalized sweep-stick mechanism of inertial-particle clustering in turbulence. Physical Review Fluids, 2021, 6(4): 044605 doi: 10.1103/PhysRevFluids.6.044605
    [26]
    Zhang H, Cui Y, Zheng X. How electrostatic forces affect particle behaviour in turbulent channel flows. Journal of Fluid Mechanics, 2023, 967: A8
    [27]
    Costa P. A FFT-based finite-difference solver for massively-parallel direct numerical simulations of turbulent flows. Computers & Mathematics with Applications, 2018, 76(8): 1853-1862
    [28]
    Maxey MR, Riley JJ. Equation of motion for a small rigid sphere in a nonuniform flow. The Physics of Fluids, 1983, 26(4): 883-889 doi: 10.1063/1.864230
    [29]
    Tsai S. Sedimentation motion of sand particles in moving water (I): The resistance on a small sphere moving in non-uniform flow. Theoretical and Applied Mechanics Letters, 2022, 12(6): 100392 doi: 10.1016/j.taml.2022.100392
    [30]
    Schiller L, Naumann A. A drag coefficient correlation. Zeitung. Verein Deutsch Ing, 1935, 77: 318-320
    [31]
    Squires KD, Eaton JK. Preferential concentration of particles by turbulence. Physics of Fluids A:Fluid Dynamics, 1991, 3(5): 1169-1178 doi: 10.1063/1.858045
    [32]
    Johnson PL. Predicting the impact of particle-particle collisions on turbophoresis with a reduced number of computational particles. International Journal of Multiphase Flow, 2020, 124: 103182 doi: 10.1016/j.ijmultiphaseflow.2019.103182
    [33]
    Grosshans H, Papalexandris MV. Direct numerical simulation of triboelectric charging in particle-laden turbulent channel flows. Journal of Fluid Mechanics, 2017, 818: 465-491 doi: 10.1017/jfm.2017.157
    [34]
    Capecelatro J, Desjardins O. An Euler-Lagrange strategy for simulating particle-laden flows. Journal of Computational Physics, 2013, 238: 1-31 doi: 10.1016/j.jcp.2012.12.015
    [35]
    Lee M, Moser RD. Direct numerical simulation of turbulent channel flow up to Re τ ≈5200. Journal of Fluid Mechanics, 2015, 774: 395-415 doi: 10.1017/jfm.2015.268
    [36]
    Horwitz JAK, Mani A. Accurate calculation of Stokes drag for point–particle tracking in two-way coupled flows. Journal of Computational Physics, 2016, 318: 85-109 doi: 10.1016/j.jcp.2016.04.034
    [37]
    Marchioli C, Soldati A, Kuerten JGM, et al. Statistics of particle dispersion in direct numerical simulations of wall-bounded turbulence: Results of an international collaborative benchmark test. International Journal of Multiphase Flow, 2008, 34(9): 879-893 doi: 10.1016/j.ijmultiphaseflow.2008.01.009
    [38]
    Johnson PL, Bassenne M, Moin P. Turbophoresis of small inertial particles: Theoretical considerations and application to wall-modelled large-eddy simulations. Journal of Fluid Mechanics, 2020, 883: A27 doi: 10.1017/jfm.2019.865
    [39]
    Apte SV, Oujia T, Matsuda K, et al. Clustering of inertial particles in turbulent flow through a porous unit cell. Journal of Fluid Mechanics, 2022, 937: A9 doi: 10.1017/jfm.2022.100
    [40]
    Ferenc JS, Néda Z. On the size distribution of poisson voronoi cells. Physica A:Statistical Mechanics and its Applications, 2007, 385(2): 518-526 doi: 10.1016/j.physa.2007.07.063
    [41]
    Liu X, Wang L, Ge W. Meso-scale statistical properties of gas-solid flow—A direct numerical simulation (DNS) study. AIChE Journal, 2017, 63(1): 3-14 doi: 10.1002/aic.15489
    [42]
    Wang G, Fong KO, Coletti F, et al. Inertial particle velocity and distribution in vertical turbulent channel flow: A numerical and experimental comparison. International Journal of Multiphase Flow, 2019, 120: 103105 doi: 10.1016/j.ijmultiphaseflow.2019.103105
    [43]
    Fong KO, Amili O, Coletti F. Velocity and spatial distribution of inertial particles in a turbulent channel flow. Journal of Fluid Mechanics, 2019, 872: 367-406 doi: 10.1017/jfm.2019.355
  • Related Articles

    [1]Song Chuanjing, Hou Shuang. NOETHER-TYPE ADIABATIC INVARIANTS FOR CONSTRAINED MECHANICS SYSTEMS ON TIME SCALES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(8): 2397-2407. DOI: 10.6052/0459-1879-24-061
    [2]Liu Huayu, Zheng Yongtong, Peng Haifeng, Gao Xiaowei, Yang Kai. A METHOD FOR COMPUTING THE EFFECTIVE IN-PLAN THERMOELASTIC PROPERTIES OF PERIODIC COMPOSITES BASED ON THE RADIAL INTEGRATION BOUNDARY ELEMENT METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(8): 2294-2303. DOI: 10.6052/0459-1879-24-044
    [3]Wu Lihua, Zhao Mi, Du Xiuli. AN ABSORBING BOUNDARY CONDITION FOR SH WAVE PROPAGATION IN VISCOELASTIC MULTILAYERED MEDIA[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 480-490. DOI: 10.6052/0459-1879-19-315
    [4]Guo Shuqi. EXACT SOLUTION OF CIRCULAR INCLUSION PROBLEMS BY A BOUNDARY INTEGRAL METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 73-81. DOI: 10.6052/0459-1879-19-283
    [5]Zhou Gangyi, Dong Xinlong, Fu Yingqian, Hu Hongzhi. AN EXPERIMENTAL STUDY ON ADIABATIC SHEAR BEHAVIOR OF TA2 TITANIUM ALLOY SUBJECT TO DIFFERENT LOADING CONDITION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(6): 1353-1361. DOI: 10.6052/0459-1879-16-198
    [6]Hu Zongjun, Niu Zhongrong, Cheng Changzheng. A NEW SEMI-ANALYTIC ALGORITHM OF NEARLY SINGULAR INTEGRALS IN HIGH ORDER BOUNDARY ELEMENT ANALYSIS OF 3D POTENTIAL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(3): 417-427. DOI: 10.6052/0459-1879-13-353
    [7]Niu Zhongrong, Hu Zongjun, Ge Renyu, Cheng Changzheng. A NEW SEMI-ANALYTIC ALGORITHM OF NEARLY SINGULAR INTEGRALS IN HIGH ORDER BOUNDARY ELEMENT ANALYSIS OF 2D ELASTICITY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(6): 897-907. DOI: 10.6052/0459-1879-13-215
    [8]Chen Tao, Mo Rong, Wan Neng, Gong Zhongwei. IMPOSING DISPLACEMENT BOUNDARY CONDITIONS WITH NITSCHE'S METHOD IN ISOGEOMETRIC ANALYSIS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(2): 371-381. DOI: 10.6052/0459-1879-2012-2-20120221
    [9]EXACT INVARIANT AND ADIABATIC INVARIANT OF A GENERAL DYNAMICAL SYSTEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 1996, 28(2): 207-216. DOI: 10.6052/0459-1879-1996-2-1995-322
    [10]样条积分方程法分析弹塑性板弯曲[J]. Chinese Journal of Theoretical and Applied Mechanics, 1990, 22(2): 241-245. DOI: 10.6052/0459-1879-1990-2-1995-940
  • Cited by

    Periodical cited type(4)

    1. 吕炎,刘寒冬,高杰,程俊,何存富. 含初应力各向异性层合管纵向导波频散特性分析. 强度与环境. 2024(05): 53-62 .
    2. 吕炎,林晓磊,高杰,何存富. 基于级数法的热弹各向异性层合板兰姆波频散特性分析. 力学学报. 2023(09): 1939-1949 . 本站查看
    3. 禹建功,王开,任小强,王现辉,张博. 功能梯度压电空心圆柱中分数阶热弹导波的频散和衰减特性. 应用数学和力学. 2023(11): 1325-1340 .
    4. 钱江,刘雯星. 基于数值积分的最佳平方逼近样条函数. 安徽师范大学学报(自然科学版). 2022(02): 107-116+138 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (625) PDF downloads (112) Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return