Citation: | Cui Yuankai, Zhang Huan. Study of the effects of inter-particle collisions on particle accumulation in turbulent channel flows. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(2): 365-376. DOI: 10.6052/0459-1879-23-283 |
[1] |
Zheng X. Mechanics of Wind-Blown Sand Movements. Springer Science & Business Media, 2009
|
[2] |
Zhang LS, Tao JJ, Wang GH, et al. Experimental study on the origin of lobe-cleft structures in a sand storm. Acta Mechanica Sinica English Series, 2021, 37(1): 7
|
[3] |
Zhang H, Zhou YH. Unveiling the spectrum of electrohydrodynamic turbulence in dust storms. Nature Communications, 2023, 14(1): 408 doi: 10.1038/s41467-023-36041-x
|
[4] |
Sippola P, Kolehmainen J, Ozel A, et al. Experimental and numerical study of wall layer development in a tribocharged fluidized bed. Journal of Fluid Mechanics, 2018, 849: 860-884 doi: 10.1017/jfm.2018.412
|
[5] |
郑晓静, 王国华. 高雷诺数壁湍流的研究进展及挑战. 力学进展, 2020, 50(1): 202001 (Zheng Xiaojing, Wang Guohua. Research progress and challenges of high Reynolds number wall turbulence. Advances in Mechanics, 2020, 50(1): 202001 (in Chinese)
Zheng Xiaojing, Wang Guohua. Research Progress and Challenges of High Reynolds number Wall Turbulence. Advances In Mechanics, 2020, 50 (1), 202001 (in Chinese))
|
[6] |
郑晓静. 关于极端力学. 力学学报, 2019, 51(4): 1266-1272 (Zheng Xiaojing. On extreme mechanics. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1266-1272 (in Chinese)
Zheng Xiaojing. On Extreme Mechanics. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51 (4), 1266-1272 (in Chinese))
|
[7] |
Zhang H, Tan X, Zheng X. Multifield intermittency of dust storm turbulence in the atmospheric surface layer. Journal of Fluid Mechanics, 2023, 963: A15 doi: 10.1017/jfm.2023.278
|
[8] |
Brandt L, Coletti F. Particle-laden turbulence: progress and perspectives. Annual Review of Fluid Mechanics, 2022, 54: 159-189 doi: 10.1146/annurev-fluid-030121-021103
|
[9] |
Zhang H, Zhou YH. Reconstructing the electrical structure of dust storms from locally observed electric field data. Nature Communications, 2020, 11(1): 5072 doi: 10.1038/s41467-020-18759-0
|
[10] |
Dhariwal R, Bragg AD. Small-scale dynamics of settling, bidisperse particles in turbulence. Journal of Fluid Mechanics, 2018, 839: 594-620 doi: 10.1017/jfm.2018.24
|
[11] |
Maxey M. Simulation methods for particulate flows and concentrated suspensions. Annual Review of Fluid Mechanics, 2017, 49: 171-193 doi: 10.1146/annurev-fluid-122414-034408
|
[12] |
Zheng X, Wang G, Zhu W. Experimental study on the effects of particle–wall interactions on VLSM in sand-laden flows. Journal of Fluid Mechanics, 2021, 914: A35 doi: 10.1017/jfm.2021.16
|
[13] |
Li J, Wang H, Liu Z, et al. An experimental study on turbulence modification in the near-wall boundary layer of a dilute gas-particle channel flow. Experiments in Fluids, 2012, 53(5): 1385-1403 doi: 10.1007/s00348-012-1364-7
|
[14] |
Wang S, Vanella M, Balaras E. A hydrodynamic stress model for simulating turbulence/particle interactions with immersed boundary methods. Journal of Computational Physics, 2019, 382: 240-263 doi: 10.1016/j.jcp.2019.01.010
|
[15] |
Jie Y, Cui Z, Xu C, et al. On the existence and formation of multi-scale particle streaks in turbulent channel flows. Journal of Fluid Mechanics, 2022, 935: A18 doi: 10.1017/jfm.2022.8
|
[16] |
Li D, Luo K, Fan J. Modulation of turbulence by dispersed solid particles in a spatially developing flat-plate boundary layer. Journal of Fluid Mechanics, 2016, 802: 359-394 doi: 10.1017/jfm.2016.406
|
[17] |
Shao X, Wu T, Yu Z. Fully resolved numerical simulation of particle-laden turbulent flow in a horizontal channel at a low Reynolds number. Journal of Fluid Mechanics, 2012, 693: 319-344 doi: 10.1017/jfm.2011.533
|
[18] |
Caporaloni M, Tampieri F, Trombetti F, et al. Transfer of particles in nonisotropic air turbulence. Journal of Atmospheric Sciences, 1975, 32(3): 565-568 doi: 10.1175/1520-0469(1975)032<0565:TOPINA>2.0.CO;2
|
[19] |
Reeks MW. The transport of discrete particles in inhomogeneous turbulence. Journal of Aerosol Science, 1983, 14(6): 729-739 doi: 10.1016/0021-8502(83)90055-1
|
[20] |
Soldati A, Marchioli C. Physics and modelling of turbulent particle deposition and entrainment: Review of a systematic study. International Journal of Multiphase Flow, 2009, 35(9): 827-839 doi: 10.1016/j.ijmultiphaseflow.2009.02.016
|
[21] |
Sardina G, Schlatter P, Brandt L, et al. Wall accumulation and spatial localization in particle-laden wall flows. Journal of Fluid Mechanics, 2012, 699: 50-78 doi: 10.1017/jfm.2012.65
|
[22] |
Wang LP, Wexler AS, Zhou Y. Statistical mechanical description and modelling of turbulent collision of inertial particles. Journal of Fluid Mechanics, 2000, 415: 117-153 doi: 10.1017/S0022112000008661
|
[23] |
Yamamoto Y, Potthoff M, Tanaka T, et al. Large-eddy simulation of turbulent gas–particle flow in a vertical channel: effect of considering inter-particle collisions. Journal of Fluid Mechanics, 2001, 442: 303-334 doi: 10.1017/S0022112001005092
|
[24] |
Motoori Y, Wong CK, Goto S. Role of the hierarchy of coherent structures in the transport of heavy small particles in turbulent channel flow. Journal of Fluid Mechanics, 2022, 942: A3 doi: 10.1017/jfm.2022.327
|
[25] |
Oka S, Goto S. Generalized sweep-stick mechanism of inertial-particle clustering in turbulence. Physical Review Fluids, 2021, 6(4): 044605 doi: 10.1103/PhysRevFluids.6.044605
|
[26] |
Zhang H, Cui Y, Zheng X. How electrostatic forces affect particle behaviour in turbulent channel flows. Journal of Fluid Mechanics, 2023, 967: A8
|
[27] |
Costa P. A FFT-based finite-difference solver for massively-parallel direct numerical simulations of turbulent flows. Computers & Mathematics with Applications, 2018, 76(8): 1853-1862
|
[28] |
Maxey MR, Riley JJ. Equation of motion for a small rigid sphere in a nonuniform flow. The Physics of Fluids, 1983, 26(4): 883-889 doi: 10.1063/1.864230
|
[29] |
Tsai S. Sedimentation motion of sand particles in moving water (I): The resistance on a small sphere moving in non-uniform flow. Theoretical and Applied Mechanics Letters, 2022, 12(6): 100392 doi: 10.1016/j.taml.2022.100392
|
[30] |
Schiller L, Naumann A. A drag coefficient correlation. Zeitung. Verein Deutsch Ing, 1935, 77: 318-320
|
[31] |
Squires KD, Eaton JK. Preferential concentration of particles by turbulence. Physics of Fluids A:Fluid Dynamics, 1991, 3(5): 1169-1178 doi: 10.1063/1.858045
|
[32] |
Johnson PL. Predicting the impact of particle-particle collisions on turbophoresis with a reduced number of computational particles. International Journal of Multiphase Flow, 2020, 124: 103182 doi: 10.1016/j.ijmultiphaseflow.2019.103182
|
[33] |
Grosshans H, Papalexandris MV. Direct numerical simulation of triboelectric charging in particle-laden turbulent channel flows. Journal of Fluid Mechanics, 2017, 818: 465-491 doi: 10.1017/jfm.2017.157
|
[34] |
Capecelatro J, Desjardins O. An Euler-Lagrange strategy for simulating particle-laden flows. Journal of Computational Physics, 2013, 238: 1-31 doi: 10.1016/j.jcp.2012.12.015
|
[35] |
Lee M, Moser RD. Direct numerical simulation of turbulent channel flow up to Re τ ≈5200. Journal of Fluid Mechanics, 2015, 774: 395-415 doi: 10.1017/jfm.2015.268
|
[36] |
Horwitz JAK, Mani A. Accurate calculation of Stokes drag for point–particle tracking in two-way coupled flows. Journal of Computational Physics, 2016, 318: 85-109 doi: 10.1016/j.jcp.2016.04.034
|
[37] |
Marchioli C, Soldati A, Kuerten JGM, et al. Statistics of particle dispersion in direct numerical simulations of wall-bounded turbulence: Results of an international collaborative benchmark test. International Journal of Multiphase Flow, 2008, 34(9): 879-893 doi: 10.1016/j.ijmultiphaseflow.2008.01.009
|
[38] |
Johnson PL, Bassenne M, Moin P. Turbophoresis of small inertial particles: Theoretical considerations and application to wall-modelled large-eddy simulations. Journal of Fluid Mechanics, 2020, 883: A27 doi: 10.1017/jfm.2019.865
|
[39] |
Apte SV, Oujia T, Matsuda K, et al. Clustering of inertial particles in turbulent flow through a porous unit cell. Journal of Fluid Mechanics, 2022, 937: A9 doi: 10.1017/jfm.2022.100
|
[40] |
Ferenc JS, Néda Z. On the size distribution of poisson voronoi cells. Physica A:Statistical Mechanics and its Applications, 2007, 385(2): 518-526 doi: 10.1016/j.physa.2007.07.063
|
[41] |
Liu X, Wang L, Ge W. Meso-scale statistical properties of gas-solid flow—A direct numerical simulation (DNS) study. AIChE Journal, 2017, 63(1): 3-14 doi: 10.1002/aic.15489
|
[42] |
Wang G, Fong KO, Coletti F, et al. Inertial particle velocity and distribution in vertical turbulent channel flow: A numerical and experimental comparison. International Journal of Multiphase Flow, 2019, 120: 103105 doi: 10.1016/j.ijmultiphaseflow.2019.103105
|
[43] |
Fong KO, Amili O, Coletti F. Velocity and spatial distribution of inertial particles in a turbulent channel flow. Journal of Fluid Mechanics, 2019, 872: 367-406 doi: 10.1017/jfm.2019.355
|
[1] | Song Chuanjing, Hou Shuang. NOETHER-TYPE ADIABATIC INVARIANTS FOR CONSTRAINED MECHANICS SYSTEMS ON TIME SCALES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(8): 2397-2407. DOI: 10.6052/0459-1879-24-061 |
[2] | Liu Huayu, Zheng Yongtong, Peng Haifeng, Gao Xiaowei, Yang Kai. A METHOD FOR COMPUTING THE EFFECTIVE IN-PLAN THERMOELASTIC PROPERTIES OF PERIODIC COMPOSITES BASED ON THE RADIAL INTEGRATION BOUNDARY ELEMENT METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(8): 2294-2303. DOI: 10.6052/0459-1879-24-044 |
[3] | Wu Lihua, Zhao Mi, Du Xiuli. AN ABSORBING BOUNDARY CONDITION FOR SH WAVE PROPAGATION IN VISCOELASTIC MULTILAYERED MEDIA[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 480-490. DOI: 10.6052/0459-1879-19-315 |
[4] | Guo Shuqi. EXACT SOLUTION OF CIRCULAR INCLUSION PROBLEMS BY A BOUNDARY INTEGRAL METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 73-81. DOI: 10.6052/0459-1879-19-283 |
[5] | Zhou Gangyi, Dong Xinlong, Fu Yingqian, Hu Hongzhi. AN EXPERIMENTAL STUDY ON ADIABATIC SHEAR BEHAVIOR OF TA2 TITANIUM ALLOY SUBJECT TO DIFFERENT LOADING CONDITION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(6): 1353-1361. DOI: 10.6052/0459-1879-16-198 |
[6] | Hu Zongjun, Niu Zhongrong, Cheng Changzheng. A NEW SEMI-ANALYTIC ALGORITHM OF NEARLY SINGULAR INTEGRALS IN HIGH ORDER BOUNDARY ELEMENT ANALYSIS OF 3D POTENTIAL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(3): 417-427. DOI: 10.6052/0459-1879-13-353 |
[7] | Niu Zhongrong, Hu Zongjun, Ge Renyu, Cheng Changzheng. A NEW SEMI-ANALYTIC ALGORITHM OF NEARLY SINGULAR INTEGRALS IN HIGH ORDER BOUNDARY ELEMENT ANALYSIS OF 2D ELASTICITY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(6): 897-907. DOI: 10.6052/0459-1879-13-215 |
[8] | Chen Tao, Mo Rong, Wan Neng, Gong Zhongwei. IMPOSING DISPLACEMENT BOUNDARY CONDITIONS WITH NITSCHE'S METHOD IN ISOGEOMETRIC ANALYSIS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(2): 371-381. DOI: 10.6052/0459-1879-2012-2-20120221 |
[9] | EXACT INVARIANT AND ADIABATIC INVARIANT OF A GENERAL DYNAMICAL SYSTEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 1996, 28(2): 207-216. DOI: 10.6052/0459-1879-1996-2-1995-322 |
[10] | 样条积分方程法分析弹塑性板弯曲[J]. Chinese Journal of Theoretical and Applied Mechanics, 1990, 22(2): 241-245. DOI: 10.6052/0459-1879-1990-2-1995-940 |
1. |
吕炎,刘寒冬,高杰,程俊,何存富. 含初应力各向异性层合管纵向导波频散特性分析. 强度与环境. 2024(05): 53-62 .
![]() | |
2. |
吕炎,林晓磊,高杰,何存富. 基于级数法的热弹各向异性层合板兰姆波频散特性分析. 力学学报. 2023(09): 1939-1949 .
![]() | |
3. |
禹建功,王开,任小强,王现辉,张博. 功能梯度压电空心圆柱中分数阶热弹导波的频散和衰减特性. 应用数学和力学. 2023(11): 1325-1340 .
![]() | |
4. |
钱江,刘雯星. 基于数值积分的最佳平方逼近样条函数. 安徽师范大学学报(自然科学版). 2022(02): 107-116+138 .
![]() |