EI、Scopus 收录
中文核心期刊
Li Guoqiang, Song Kuihui, Yi Shihe, Zhang Weiguo, Yang Yongdong, Yuan Mingchuan, Wu Linxin. Test research for active control of airfoil reverse flow dynamic stall based on trailing edge flap. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(11): 2453-2467. DOI: 10.6052/0459-1879-23-244
Citation: Li Guoqiang, Song Kuihui, Yi Shihe, Zhang Weiguo, Yang Yongdong, Yuan Mingchuan, Wu Linxin. Test research for active control of airfoil reverse flow dynamic stall based on trailing edge flap. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(11): 2453-2467. DOI: 10.6052/0459-1879-23-244

TEST RESEARCH FOR ACTIVE CONTROL OF AIRFOIL REVERSE FLOW DYNAMIC STALL BASED ON TRAILING EDGE FLAP

  • Received Date: June 13, 2023
  • Accepted Date: October 06, 2023
  • Available Online: October 07, 2023
  • In order to solve the issues such as unsteady load, increased drag and negative lift caused by reverse flow dynamic stall in reverse flow regime of helicopters, a test research which focused on the control of airfoil reverse flow dynamic stall was carried out using an airfoil test model with trailing edge flap. Dynamic pressure measurement was combined with integral of airfoil surface pressure to analyze the influence of different oscillating phase offset, amplitude and reduced frequency of trailing edge flap on reverse flow dynamic stall control, and the difference between dynamic pitching and fixed deflection of the trailing edge flap was compared. The test Reynolds number was Re = 3.5 × 105. The results show that the flow separation at the blunt geometric leading edge during reverse flow dynamic stall can be improved when dynamic pitching trailing edge flap oscillating in the same frequency with airfoil model and the phase offset between dynamic pitching trailing edge flap and airfoil model is set to 0°, negative lift coefficient can be reduced by 21.2%, drag coefficient can be reduced by 37.5%, hysteresis area of pitching moment coefficient can be reduced by 44.6% under typical test condition. The control effect of dynamic pitching trailing edge flap on reverse flow dynamic stall raises with the increase of oscillation amplitude, but further increasing the oscillation amplitude has limited impact on the improvement of control effectiveness. When reduced frequency was increased, the control effect of dynamic pitching trailing edge flap on the drag in the reverse flow regime will be more obvious. Both dynamic pitching and fixed deflection of trailing edge flap can improve the unsteady aerodynamic performance in reverse flow, but dynamic pitching trailing edge flap has better adaptability than fixed deflection trailing edge flap during different angle of attack. Better unsteady load control and better drag and negative lift improvement was also observed when trailing edge flap was dynamic pitching.
  • [1]
    孔卫红, 陈仁良. 反流区对复合高速直升机旋翼气动特性的影响. 航空学报, 2011, 32(2): 223-230 (Kong Weihong, Chen Renliang. Effect of reverse flow region on characteristics of compound high speed helicopter rotor. Acta Aeronautica et Astronautica Sinica, 2011, 32(2): 223-230 (in Chinese)

    Kong Weihong, Chen Renliang. Effect of reverse flow region on characteristics of compound high speed helicopter rotor. Acta Aeronautica et Astronautica Sinica, 2011, 32(2): 223-230 (in Chinese)
    [2]
    吴希明, 牟晓伟. 直升机关键技术及未来发展与设想. 空气动力学学报, 2021, 39(3): 1-10 (Wu Ximing, Mou Xiaowei. A perspective of the future development of key helicopter technologies. Acta Aerodynamica Sinica, 2021, 39(3): 1-10 (in Chinese) doi: 10.7638/kqdlxxb-2021.0042

    Wu Ximing, Mou Xiaowei. A perspective of the future development of key helicopter technologies. Acta Aerodynamica Sinica, 2021, 39(3): 1-10 (in Chinese) doi: 10.7638/kqdlxxb-2021.0042
    [3]
    Datta A, Yeo H, Norman TR. Experimental investigation and fundamental understanding of a full-scale slowed UH-60 A rotor at high advance ratios. Journal of the American Helicopter Society, 2013, 58(2): 1-17
    [4]
    招启军, 王清, 赵国庆. 旋翼翼型定常−非定常特性综合优化设计新方法. 南京航空航天大学学报, 2014, 46(3): 355-363 (Zhao Qijun, Wang Qing, Zhao Guoqing. New optimization design method for rotor airfoil considering steady-unsteady characteristics. Journal of Nanjing University of Aeronautics & Astronautics, 2014, 46(3): 355-363 (in Chinese) doi: 10.16356/j.1005-2615.2014.03.006

    Zhao Qijun, Wang Qing, Zhao Guoqing. New optimization design method for rotor airfoil considering steady-unsteady characteristics. Journal of Nanjing University of Aeronautics & Astronautics, 2014, 46(3): 355-363 (in Chinese) doi: 10.16356/j.1005-2615.2014.03.006
    [5]
    Wang Q, Zhao QJ, Wu Q. Aerodynamic shape optimization for alleviating dynamic stall characteristics of helicopter rotor airfoil. Chinese Journal of Aeronautics, 2015, 28(2): 346-356 doi: 10.1016/j.cja.2014.12.033
    [6]
    喻伯平, 李高华, 谢亮等. 基于代理模型的旋翼翼型动态失速优化设计. 浙江大学学报(工学版), 2020, 54(4): 833-842 (Yu Boping, Li Gaohua, Xie Lliang, et al. Dynamic stall optimization design of rotor airfoil based on surrogate model. Journal of Zhejiang University (Engineering Science), 2020, 54(4): 833-842 (in Chinese) doi: 10.3785/j.issn.1008-973X.2020.04.023

    Yu Boping, Li Gaohua, Xie Lliang, et al. Dynamic stall optimization design of rotor airfoil based on surrogate model. Journal of Zhejiang University (Engineering Science), 2020, 54(4): 833-842 (in Chinese) doi: 10.3785/j.issn.1008-973X.2020.04.023
    [7]
    招启军, 井思梦, 赵国庆等. 旋翼翼型动态失速机理及非定常设计研究进展. 空气动力学学报, 2021, 39(6): 70-84 (Zhao Qijun, Jing Simeng, Zhao Guoqing, et al. Review of research progress on dynamic stall mechanism and unsteady design of rotor airfoils. Acta Aerodynamica et Sinica, 2021, 39(6): 70-84 (in Chinese) doi: 10.7638/kqdlxxb-2021.0261

    Zhao Qijun, Jing Simeng, Zhao Guoqing, et al. Review of research progress on dynamic stall mechanism and unsteady design of rotor airfoils. Acta Aerodynamica et Sinica, 2021, 39(6): 70-84 (in Chinese) doi: 10.7638/kqdlxxb-2021.0261
    [8]
    张卫国, 史喆羽, 李国强等. 风力机翼型动态失速等离子体流动控制数值研究. 力学学报, 2020, 52(6): 1678-1689 (Zhang Weiguo, Shi Zheyu, Li Guoqiang, et al. Numerical study on dynamic stall flow control for wind turbine airfoil using plasma actuator. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1678-1689 (in Chinese) doi: 10.6052/0459-1879-20-090

    Zhang Weiguo, Shi Zheyu, Li Guoqiang, et al. Numerical study on dynamic stall flow control for wind turbine airfoil using plasma actuator. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1678-1689 (in Chinese) doi: 10.6052/0459-1879-20-090
    [9]
    沙珺, 史志伟, 陈臻等. 基于AC-DBD等离子体激励的NACA0012翼型动态失速控制. 气体物理, 2021, 6(3): 50-61 (Sha Jun, Shi Zhiwei, Chen Zhen, et al. Dynamic stall control of NACA0012 airfoil using AC-DBD plasma actuators. Physics of Gases, 2021, 6(3): 50-61 (in Chinese) doi: 10.19527/j.cnki.2096-1642.0884

    Sha Jun, Shi Zhiwei, Chen Zhen, et al. Dynamic stall control of NACA0012 airfoil using AC-DBD plasma actuators. Physics of Gases, 2021, 6(3): 50-61 (in Chinese) doi: 10.19527/j.cnki.2096-1642.0884
    [10]
    许和勇, 邢世龙, 叶正寅等. 基于充气前缘技术的旋翼翼型动态失速抑制. 航空学报, 2017, 38(6): 120799 (Xu Heyong, Xing Shilong, Ye Zhengyin, et al. Dynamic stall suppression for rotor airfoil based on inflatable leading edge technology. Acta Aeronautica et Astronautica Sinica, 2017, 38(6): 120799 (in Chinese)

    Xu Heyong, Xing Shilong, Ye Zhengyin, et al. Dynamic stall suppression for rotor airfoil based on inflatable leading edge technology. Acta Aeronautica et Astronautica Sinica, 2017, 38(6): 120799-120799 (in Chinese)
    [11]
    卢天宇, 吴小胜. 翼型前缘变形对动态失速效应影响的数值计算. 航空学报, 2014, 35(4): 986-994 (Lu Tianyu, Wu Xiaosheng. Numerical calculation effects of deforming leading edge on airfoil dynamic stall control. Acta Aeronautica et Astronautica Sinica, 2014, 35(4): 986-994 (in Chinese)

    Lu Tianyu, Wu Xiaosheng. Numerical Calculation Effects of Deforming Leading Edge on Airfoil Dynamic Stall Control. Acta Aeronautica et Astronautica Sinica, 2014, 35(4): 986-994 (in Chinese)
    [12]
    Xing SL, Xu HY, Ye ZY, et al. Dynamic stall control using inflatable leading edge. International Journal of Modern Physics B, 2020, 34(2040108): 1-5
    [13]
    赵国庆, 招启军, 顾蕴松等. 合成射流对失速状态下翼型大分离流动控制的试验研究. 力学学报, 2015, 47(2): 351-355 (Zhao Guoqing, Zhao Qijun, Gu Yunsong, et al. Experimental investigation of synthetic jet control on large flow separation of airfoil during stall. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(2): 351-355 (in Chinese) doi: 10.6052/0459-1879-14-134

    Zhao Guoqing, Zhao Qijun, Gu Yunsong, et al. Experimental investigation of synthetic jet control on large flow separation of airfoil during stall. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(2): 351-355 (in Chinese) doi: 10.6052/0459-1879-14-134
    [14]
    史勇杰, 厉聪聪, 徐国华. 基于合成射流的旋翼翼型动态失速控制研究. 南京航空航天大学学报, 2020, 52(2): 270-279 (Shi Yongjie, Li Congcong, Xu Guohua. Rotor airfoil dynamic stall control based on synthetic jet. Journal of Nanjing University of Aeronautics & Astronautics, 2020, 52(2): 270-279 (in Chinese) doi: 10.16356/j.1005-2615.2020.02.013

    Shi Yongjie, Li Congcong, Xu Guohua. Rotor airfoil dynamic stall control based on synthetic jet. Journal of Nanjing University of Aeronautics & Astronautics, 2020, 52(02): 270-279 (in Chinese) doi: 10.16356/j.1005-2615.2020.02.013
    [15]
    贾天昊, 高超, 许和勇等. 变来流下翼型动态失速的协同射流控制数值模拟. 空气动力学学报, 2022, 41(X): 1-11 (Jia Tianhao, Gao Chao, Xu Heyong, et al. Numerical simulation on dynamic stall control of airfoil based on co-flow jet under variable free stream. Acta Aerodynamica Sinica, 2022, 41(X): 1-11 (in Chinese)

    Jia Tianhao, Gao Chao, Xu Heyong, et al. Numerical simulation on Dynamic stall control of airfoil based on co-flow jet under variable free stream. Acta Aerodynamica Sinica, 2022, 41(X): 1-11 (in Chinese)
    [16]
    Liu J, Chen R, YouY, et al. Numerical investigation of dynamic stall suppression of rotor airfoil via improved co-flow jet. Chinese Journal of Aeronautics, 2022, 35(3): 169-184 doi: 10.1016/j.cja.2021.07.041
    [17]
    李国强, 宋奎辉, 覃晨等. 基于后缘小翼的翼型动态失速主动控制试验研究. 航空学报, 2024, 45(6): 128699 (Li Guoqiang, Song Kuihui, Qin Chen, et al. Test research for active control of airfoil dynamic stall based on trailing edge flap. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 128699 (in Chinese)

    Li Guoqiang, Song Kuihui, Qin Chen, et al. Test research for active control of airfoil dynamic stall based on trailing edge flap. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 128699-128699 (in Chinese)
    [18]
    马奕扬, 招启军, 赵国庆. 基于后缘小翼的旋翼翼型动态失速控制分析. 航空学报, 2017, 38(3): 120312 (Ma Yiyang, Zhao Qijun, Zhao Guoqing. Dynamic stall control of rotor airfoil via trailing-edge flap. Acta Aeronautica et Astronautica Sinca, 2017, 38(3): 120312 (in Chinese)

    Ma Yiyang, Zhao Qijun, Zhao Guoqing. Dynamic stall control of rotor airfoil via trailing-edge flap. Acta Aeronautica et Astronautica Sinca, 2017, 38(3): 120312 (in Chinese)
    [19]
    马奕扬, 招启军. 后缘小翼对旋翼气动特性的控制机理及参数分析. 航空学报, 2018, 39(5): 121671 (Ma Yiyang, Zhao Qijun. Control mechanism and parameter analyses of aerodynamic characteristics of rotor via trailing-edge flap. Acta Aeronautica et Astronautica Sinica, 2018, 39(5): 121671 (in Chinese)

    Ma Yiyang, Zhao Qijun. Control mechanism and parameter analyses of aerodynamic characteristics of rotor via trailing-edge flap. Acta Aeronautica et Astronautica Sinica, 2018, 39(5): 121671-121671 (in Chinese)
    [20]
    Lind AH, Lefebvre JN, Jones AR. Time-averaged aerodynamics of sharp and blunt trailing-edge static airfoils in reverse flow. AIAA Journal, 2015, 52(12): 1-18
    [21]
    袁明川, 杨永飞, 林永峰. 高速直升机旋翼反流区桨叶剖面翼型气动特性CFD分析. 直升机技术, 2015, 182(1): 1-12 (Yuan Mingchuan, Yang Yongfei, Lin Yongfeng. CFD analysis on aerodynamic characteristics of blade profiles in reverse flow region of high speed helicopter rotor. Helicopter Technique, 2015, 182(1): 1-12 (in Chinese) doi: 10.3969/j.issn.1673-1220.2015.01.001

    Yuan Mingchuan, Yang Yongfei, Lin Yongfeng. CFD analysis on aerodynamic characteristics of blade profiles in reverse flow region of high speed helicopter rotor. Helicopter technique, 2015, 182(1): 1-12 (in Chinese) doi: 10.3969/j.issn.1673-1220.2015.01.001
    [22]
    张威, 胡偶, 王菲等. 基于X2 TD高速直升机的前行桨叶概念旋翼翼型指标设计方法. 空气动力学学报, 2022, 40(6): 73-82 (Zhang Wei, Hu Ou, Wang Fei, et al. An indicator design method of advancing blade concept rotor airfoil based on X2 TD aircraft. Acta Aerodynamica Sinica, 2022, 40(6): 73-82 (in Chinese) doi: 10.7638/kqdlxxb-2021.0170

    Zhang Wei, Hu Ou, Wang Fei, et al. An indicator design method of advancing blade concept rotor airfoil based on X2 TD aircraft. Acta Aerodynamica Sinica, 2022, 40(6): 73-82 (in Chinese) doi: 10.7638/kqdlxxb-2021.0170
    [23]
    Han SQ, Song WP, Han ZH, et al. Hybrid inverse/optimization design method for rigid coaxial rotor airfoils considering reverse flow. Aerospace Science and Technology, 2019, 95(105488): 1-15
    [24]
    Giovanetti EB, Hall KC. A variational approach to multipoint aerodynamic optimization of conventional and coaxial helicopter rotors. Proceedings of the American Helicopter Society 71 st Annual Forum, 2015, 71(291): 1-13
    [25]
    Lind AH, Jones AR. Unsteady aerodynamics of reverse flow dynamic stall on an oscillating blade section. Physics of Fluids, 2016, 28(07102): 1-22
    [26]
    Lind AH, Smith LR, Milluzzo JI, et al. Reynolds number effects on rotor blade sections in reverse flow. Journal of Aircraft, 2016, 53(5): 1-13
    [27]
    Jacobellis G, Gandhi F, Rice TT, et al. Computational and experimental investigation of camber-morphing airfoils for reverse flow drag reduction on high-speed rotorcraft. Journal of the American Helicopter Society, 2019, 65(012001): 1-14
    [28]
    Rice TT, Ko D, Amitay M. Control of reversed flow in static and dynamic conditions using camber morphing airfoils//AIAA Aviation 2019 Forum, 17-21 June, 2019: 3213
    [29]
    Deanna K, Tufan KG, Michael A. Control of reverse flow over a cantilevered blade using passive camber morphing. AIAA Journal, 2021, 59(12): 1-22
    [30]
    Cooper N. Control of reverse flow over a cantilevered swept blade using passive camber morphing//AIAA Scitech 2022 Forum, 2022: 0475
    [31]
    康洪铭, 唐领, 孔鹏等. FL-11风洞旋翼翼型俯仰/沉浮动态试验装置的研制. 实验流体力学, 2021, 35(4): 98-105 (Kang hongming, Tang ling, Kong Peng, et al. A pitching and plunging dynamic test equipment of rotor blade airfoils in the FL-11 wind tunnel. Journal of Experiments in Fluid Mechanics, 2021, 35(4): 98-105 (in Chinese) doi: 10.11729/syltlx20200130

    Kang hongming, Tang ling, Kong Peng, et al. A pitching and plunging dynamic test equipment of rotor blade airfoils in the FL-11 wind tunnel. Journal of Experiments in Fluid Mechanics, 2021, 35(4): 98-105 (in Chinese) doi: 10.11729/syltlx20200130
    [32]
    Lind AH. An experimental study of static and oscillating rotor blade sections in reverse flow. [PhD Thesis]. Maryland: University of Maryland, 2015: 5-10
  • Related Articles

    [1]Zou Lin, Wang Jiahui, Wang Cheng, Zheng Yunlong, Xu Jinli. ACTIVE CONTROL OF VORTEX-INDUCED VIBRATION OF CYLINDR BASED ON VELOCITY AND DISPLACEMENT FEEDBACK[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(9): 1834-1846. DOI: 10.6052/0459-1879-23-183
    [2]Bai Jianxia, Zhao Kaifang, Cheng Xiaoqi, Jiang Nan. EXPERIMENTAL INVESTIGATION ON ACTIVE CONTROL TURBULENT BOUNDARY LAYER DRAY REDUCTION BY SYNCHRONOUS AND ASYNCHRONOUS VIBRATION OF DUAL VIBRATORS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(1): 52-61. DOI: 10.6052/0459-1879-22-248
    [3]Fan Gang, Zhang Hongyu, Wang Jiebing, Xue Zheng, Liu Xiaohua. RESEARCH ON THE FORMATION MECHANISM OF ADDITIONAL BENDING MOMENT AND BEARING CAPACITY OF BOLT OF TYPICAL CONNECTED STRUCTURE AND STRUCTURAL OPTIMIZATION DESIGN[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(5): 1303-1321. DOI: 10.6052/0459-1879-21-644
    [4]Wang Chunhui, Wang Jiaan, Wang Chao, Guo Chunyu, Zhu Guangyuan. RESEARCH ON VERTICAL MOVEMENT OF CYLINDRICAL STRUCTURE OUT OF WATER AND BREAKING THROUGH ICE LAYER BASED ON S-ALE METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 3110-3123. DOI: 10.6052/0459-1879-21-217
    [5]Pu Cheng, Liu Fengyin, Wang Shaohan, Zhong Lijia. THE FORCE PARAMETER AND PROFILE CHANGE OF LIQUID BRIDGE BETWEEN TWO UNEQUAL SPHERES—AN EXPERIMENT STUDY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(7): 2090-2100. DOI: 10.6052/0459-1879-21-019
    [6]Zhang Weiguo, Shi Zheyu, Li Guoqiang, Yang Yongdong, Huang Minqi, Bai Yunmao. NUMERICAL STUDY ON DYNAMIC STALL FLOW CONTROL FOR WIND TURBINE AIRFOIL USING PLASMA ACTUATOR[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1678-1689. DOI: 10.6052/0459-1879-20-090
    [7]Liu Song Cai Guoping Dong Xingjian. Time-domain dynamic modeling and active control of offshore platform[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(4): 737-745. DOI: 10.6052/0459-1879-2011-4-lxxb2010-373
    [8]Zhiwu Zhu, Jianguo Ning, Shuncheng Song. Experimental research and numerical analysis of frozen soil based on endochronic theory[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(4): 549-554. DOI: 10.6052/0459-1879-2009-4-2008-017
    [9]Longxiang Chen, Guoping Cai. Experimental study on active control of a rotating flexible beam with time delay[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(4): 520-527. DOI: 10.6052/0459-1879-2008-4-2008-010
    [10]ACTIVE CONTROL OF PIEZOELECTRIC INTELLIGENT ANNULAR PLATES 1)[J]. Chinese Journal of Theoretical and Applied Mechanics, 1999, 31(3): 366-371. DOI: 10.6052/0459-1879-1999-3-1995-042
  • Cited by

    Periodical cited type(1)

    1. 甘文彪,庄俊杰,向锦武,左振杰,赵志杰,罗振兵. 临近空间低动态飞行器螺旋桨流动控制研究进展. 航空学报. 2024(17): 26-44 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (533) PDF downloads (114) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return