Citation: | Feng Xuekai, Wang Baozhen, Wu Xutao, Wang Xuan, Guo Yu. In-plane compression behavior of sinusoidal honeycomb with circular nodes. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(9): 1910-1920. DOI: 10.6052/0459-1879-23-235 |
[1] |
Gao D, Wang S, Zhang M, et al. Experimental and numerical investigation on in-plane impact behaviour of chiral auxetic structure. Composite Structures, 2021, 267: 113922 doi: 10.1016/j.compstruct.2021.113922
|
[2] |
Wei L, Zhao X, Yu Q, et al. In-plane compression behaviors of the auxetic star honeycomb: Experimental and numerical simulation. Aerospace Science and Technology, 2021, 115: 106797 doi: 10.1016/j.ast.2021.106797
|
[3] |
Chen S, Wang B, Zhu S, et al. A novel composite negative stiffness structure for recoverable trapping energy. Composites Part A: Applied Science and Manufacturing, 2020, 129: 105697 doi: 10.1016/j.compositesa.2019.105697
|
[4] |
侯秀慧, 吕游, 周世奇等. 新型负刚度吸能结构力学特性分析. 力学学报, 2021, 53(7): 1940-1950 (Hou Xiuhui, Lü You, Zhou Shiqi, et al. Analysis of mechanical properties of new negative stiffness energy absorbing structures. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(7): 1940-1950 (in Chinese) doi: 10.6052/0459-1879-21-083
Hou Xiuhui, Lü You, Zhou Shiqi, et al. Analysis of mechanical properties of new negative stiffness energy absorbing structures. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(7): 1940-1950 (in Chinese) doi: 10.6052/0459-1879-21-083
|
[5] |
刘洋佐, 马大为, 任杰等. 双箭头负泊松比结构抗侵彻性能. 国防科技大学学报, 2023, 45(2): 197-207 (Liu Yangzuo, Ma Dawei, Ren Jie, et al. Ballistic performance of double-arrow negative Poisson’s ratio structure. Journal of National University of Defence Technology, 2023, 45(2): 197-207 (in Chinese) doi: 10.11887/j.cn.202302023
Liu Yangzuo, Ma Dawei, Ren Jie et al. Ballistic performance of double-arrow negative poisson’s ratio structure. Journal of National University of Defence Technology, 2023, 45(2): 197-207(in Chinese) doi: 10.11887/j.cn.202302023
|
[6] |
任鑫, 张相玉, 谢亿民. 负泊松比材料和结构的研究进展. 力学学报, 2019, 51(3): 656-687 (Ren Xin, Zhang Xiangyu, Xie Yimin. Research progress in auxetic materials and structures. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 656-687 (in Chinese) doi: 10.6052/0459-1879-18-381
Ren Xin, Zhang Xiangyu, Xie Yimin. Research progress in auxetic materials and structures. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 656-687(in Chinese) doi: 10.6052/0459-1879-18-381
|
[7] |
吴文旺, 肖登宝, 孟嘉旭等. 负泊松比结构力学设计、抗冲击性能及在车辆工程应用与展望. 力学学报, 2021, 53(3): 611-638 (Wu Wenwang, Xiao Dengbao, Meng Jiaxu, et al. Structural mechanics design, impact resistance and application of negative Poisson's ratio in vehicle engineering. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(3): 611-638 (in Chinese) doi: 10.6052/0459-1879-20-333
Wu Wenwang, Xiao Dengbao, Meng Jiaxu, et al. Structural mechanics design, impact resistance and application of negative Poisson's ratio in vehicle engineering. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(3): 611-638 (in Chinese) doi: 10.6052/0459-1879-20-333
|
[8] |
Zhang XC, An LQ, Ding HM, et al. The influence of cell micro-structure on the in-plane dynamic crushing of honeycombs with negative Poisson’s ratio. Journal of Sandwich Structures & Materials, 2015, 17(1): 26-55
|
[9] |
Grima JN, Gatt R, Alderson A, et al. On the potential of connected stars as auxetic systems. Molecular Simulation, 2005, 31(13): 925-935 doi: 10.1080/08927020500401139
|
[10] |
Alderson A, Alderson KL, Attard D, et al. Elastic constants of 3-, 4-and 6-connected chiral and anti-chiral honeycombs subject to uniaxial in-plane loading. Composites Science and Technology, 2010, 70(7): 1042-1048 doi: 10.1016/j.compscitech.2009.07.009
|
[11] |
Najafi M, Ahmadi H, Liaghat G. Experimental investigation on energy absorption of auxetic structures. Materials Today: Proceedings, 2021, 34: 350-355 doi: 10.1016/j.matpr.2020.06.075
|
[12] |
Hu LL, Luo ZR, Zhang ZY, et al. Mechanical property of re-entrant anti-trichiral honeycombs under large deformation. Composites Part B: Engineering, 2019, 163: 107-120 doi: 10.1016/j.compositesb.2018.11.010
|
[13] |
Wang H, Lu Z, Yang Z, et al. In-plane dynamic crushing behaviors of a novel auxetic honeycomb with two plateau stress regions. International Journal of Mechanical Sciences, 2019, 151: 746-759 doi: 10.1016/j.ijmecsci.2018.12.009
|
[14] |
薛潇, 张君华, 孙莹等. 曲壁蜂窝夹层悬臂板的振动特性研究. 力学学报, 2022, 54(11): 3169-3180 (Xue Xiao, Zhang Junhua, Sun Ying, et al. Vibrational characteristics of honeycomb sandwich cantilever plate with curved-wall core. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(11): 3169-3180 (in Chinese) doi: 10.6052/0459-1879-22-305
Xue Xiao, Zhang Junhua, Sun Ying, Quan Tiehan. Vibrational characteristics of honeycomb sandwich cantilever plate with curved-wall core. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(11): 3169-3180(in Chinese) doi: 10.6052/0459-1879-22-305
|
[15] |
Yang X, Sun Y, Yang J, et al. Out-of-plane crashworthiness analysis of bio-inspired aluminum honeycomb patterned with horseshoe mesostructure. Thin-Walled Structures, 2018, 125: 1-11 doi: 10.1016/j.tws.2018.01.014
|
[16] |
Lee N, Horstemeyer MF, Rhee H, et al. Hierarchical multiscale structure−property relationships of the red-bellied woodpecker (Melanerpes carolinus) beak. Journal of the Royal Society Interface, 2014, 11(96): 20140274 doi: 10.1098/rsif.2014.0274
|
[17] |
Liu K, Cao XF, Zhang P, et al. Dynamic mechanical performances of enhanced anti-tetra-chiral structure with rolled cross-section ligaments under impact loading. International Journal of Impact Engineering, 2022, 166: 104204 doi: 10.1016/j.ijimpeng.2022.104204
|
[18] |
Qi C, Jiang F, Yang S, et al. Dynamic crushing response of novel re-entrant circular auxetic honeycombs: Numerical simulation and theoretical analysis. Aerospace Science and Technology, 2022, 124: 107548 doi: 10.1016/j.ast.2022.107548
|
[19] |
Zhang Y, Ren X, Jiang W, et al. In-plane compressive properties of assembled auxetic chiral honeycomb composed of slotted wave plate. Materials & Design, 2022, 221: 110956
|
[20] |
Guo Z, Li Z, Li X, et al. Theoretical, numerical, and experimental study on quasi-static compressive behaviors of elliptical anti-chiral auxetic structure. Materials Today Communications, 2023, 34: 105059 doi: 10.1016/j.mtcomm.2022.105059
|
[21] |
Dolla WJS, Fricke BA, Becker BR. Structural and drug diffusion models of conventional and auxetic drug-eluting stents. Journal of Medical Devices, 2007, 1(1): 47-55 doi: 10.1115/1.2355691
|
[22] |
邓小林, 刘旺玉. 一种负泊松比正弦曲线蜂窝结构的面内冲击动力学分析. 振动与冲击, 2017, 36(13): 103-109, 154 (Deng Xiaolin, Liu Wangyu. In-plane impact dynamic analysis for a sinusoidal curved honeycomb structure with negative Poisson’s ratio. Journal of Vibration and Shock, 2017, 36(13): 103-109, 154 (in Chinese) doi: 10.13465/j.cnki.jvs.2017.13.016
Deng Xiaolin, Liu Wangyu. In-plane impact dynamic analysis for a sinusoidal curved honeycomb structure with negative poisson’s ratio. Journal of Vibration and Shock, 2017, 36(13): 103-109, 154 (in Chinese) doi: 10.13465/j.cnki.jvs.2017.13.016
|
[23] |
Li A, Lei Y, Bai Y, et al. Improved lightweight corrugated network design to auxetic perforated metamaterial. International Journal of Mechanical Sciences, 2023, 243: 108040 doi: 10.1016/j.ijmecsci.2022.108040
|
[24] |
Chen Y, Li T, Scarpa F, et al. Lattice metamaterials with mechanically tunable Poisson’s ratio for vibration control. Physical Review Applied, 2017, 7(2): 024012 doi: 10.1103/PhysRevApplied.7.024012
|
[25] |
Lu H, Wang X, Chen T. In-plane dynamics crushing of a combined auxetic honeycomb with negative Poisson's ratio and enhanced energy absorption. Thin-Walled Structures, 2021, 160: 107366 doi: 10.1016/j.tws.2020.107366
|
[26] |
Yang P, Zhang XG, Han D, et al. The out-of-plane compressive behavior of auxetic chiral lattice with circular nodes. Thin-Walled Structures, 2023, 182: 110152 doi: 10.1016/j.tws.2022.110152
|
[27] |
Zhang XG, Ren X, Jiang W, et al. A novel auxetic chiral lattice composite: Experimental and numerical study. Composite Structures, 2022, 282: 115043 doi: 10.1016/j.compstruct.2021.115043
|
[28] |
Meng Z, Liu M, Zhang Y, et al. Multi-step deformation mechanical metamaterials. Journal of the Mechanics and Physics of Solids, 2020, 144: 104095 doi: 10.1016/j.jmps.2020.104095
|
[29] |
Liu H, Zhang ET, Wang G, et al. In-plane crushing behavior and energy absorption of a novel graded honeycomb from hierarchical architecture. International Journal of Mechanical Sciences, 2022, 221: 107202 doi: 10.1016/j.ijmecsci.2022.107202
|
[30] |
Xu F, Yu K, Hua L. In-plane dynamic response and multi-objective optimization of negative Poisson's ratio (NPR) honeycomb structures with sinusoidal curve. Composite Structures, 2021, 269: 114018 doi: 10.1016/j.compstruct.2021.114018
|
[31] |
Gong C, Bai Z, Lyu J, et al. Crashworthiness analysis of bionic thin-walled tubes inspired by the evolution laws of plant stems. Thin-Walled Structures, 2020, 157: 107081 doi: 10.1016/j.tws.2020.107081
|
[1] | Lu Chuanhao, Zhou Yuqi, Cao Yong, Li Jie, Liu Zhifang, Chen Long. RESEARCH AND OPTIMIZATION OF IMPACT RESISTANCE OF NOVEL GRADIENT CONTINUOUS CONTROLLABLE SANDWICH PANELS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(6): 1713-1726. DOI: 10.6052/0459-1879-23-569 |
[2] | Zhang Tianhui, Liu Zhifang, Lei Jianyin, Wang Zhihua, Li Shiqiang. PLASTIC DYNAMIC RESPONSE AND ENERGY DISSIPATION MECHANISM OF ALUMINUM FOAM SANDWICH CIRCULAR TUBE UNDER INTERNAL BLAST LOADING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(10): 2344-2353. DOI: 10.6052/0459-1879-23-165 |
[3] | Chen Yao, Ye Wangjie, Shi Jiayao, Feng Jian. DIGITAL DESIGN AND MODEL VERIFICATION OF MIURA ORIGAMI METAMATERIAL STRUCTURES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(7): 2019-2029. DOI: 10.6052/0459-1879-22-080 |
[4] | Fan Dongyu, Su Binhao, Peng Hui, Pei Xiaoyang, Zheng Zhijun, Zhang Jianxun, Qin Qinghua. RESEARCH ON DYNAMIC CRUSHING AND MECHANISM OF MITIGATION AND ENERGY ABSORPTION OF CELLULAR SACRIFICIAL LAYERS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(6): 1630-1640. DOI: 10.6052/0459-1879-22-047 |
[5] | Jia Ran, Zhao Guiping. POISSON’S RATIO AND TRIAXIAL COMPRESSION DEFORMATION PATTERN OF CLOSED-CELL ALUMINUM FOAM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(8): 2289-2297. DOI: 10.6052/0459-1879-21-173 |
[6] | Wu Wenwang, Xiao Dengbao, Meng Jiaxu, Liu Kai, Niu Yinghao, Xue Rui, Zhang Peng, Ding Wenjie, Ye Xuan, Ling Xue, Bi Ying, Xia Yong. MECHANICAL DESIGN, IMPACT ENERGY ABSORPTION AND APPLICATIONS OF AUXETIC STRUCTURES IN AUTOMOBILE LIGHTWEIGHT ENGINEERING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(3): 611-638. DOI: 10.6052/0459-1879-20-333 |
[7] | Zeqi Tong, Yang Liu, Shutian Liu. DESIGN OPTIMIZATION OF TOP-HAT BEAM FOR ENERGY ABSORPTION UNDER TRANSVERSE CRASH BASED ON VARIABLE GAUGE ROLLING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 462-472. DOI: 10.6052/0459-1879-18-323 |
[8] | Wang Pengfei, Xu Songlin, Zheng Hang, Hu Shisheng. INFLUENCE OF DEFORMATION MODES ON SHPB EXPERIMENTAL RESULTS OF CELLULAR METAL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(5): 928-932. DOI: 10.6052/0459-1879-11-354 |
[9] | Bo Wang, Xiong Zhang, Shengli Xu. Mechanical behavior of 2d periodic honeycombs under in-plane uniaxial compression[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(2): 274-281. DOI: 10.6052/0459-1879-2009-2-2007-400 |
[10] | Interaction effect in energy absorption of porous material filled thin-walled structure[J]. Chinese Journal of Theoretical and Applied Mechanics, 2005, 37(6): 697-703. DOI: 10.6052/0459-1879-2005-6-2004-255 |
1. |
于江飞,连城阅,汤涛,唐卓,汪洪波,孙明波. 基于深度学习建表的宽域发动机火焰面燃烧模型构建与验证. 力学学报. 2024(03): 723-739 .
![]() | |
2. |
李嘉航,石保禄,赵马杰,王宁飞. 高马赫数飞行条件下超燃冲压发动机燃烧组织方案数值模拟. 火箭推进. 2023(05): 1-12 .
![]() |