Citation: | Chen Yang, Liu Xiaojun, Peng Xulong, Chen Deliang. Nonlinear bending behavior of porous functionally graded material tubes in hygro-thermal environment. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(1): 141-148. DOI: 10.6052/0459-1879-23-185 |
[1] |
Chen D, Gao K, Yang J, et al. Functionally graded porous structures: Analyses, performances, and applications—A review. Thin-Walled Structures, 2023, 191: 111046 doi: 10.1016/j.tws.2023.111046
|
[2] |
Koizumi M. The concept of FGM. Ceramic Transactions, 1993, 34: 3-10
|
[3] |
Lu TJ, Liu T, Deng ZC. Multifunctional design of cellular metals: A review. Mechanical Engineering, 2008, 30(1): 1-9
|
[4] |
Qiu X, Jing X, Du L, et al. Mode-merging design method for nonlocally reacting liners with porous materials. AIAA Journal, 2020, 58(6): 2533-2545 doi: 10.2514/1.J058958
|
[5] |
Geyer TF. Vortex shedding noise from finite, wall-mounted, circular cylinders modified with porous material. AIAA Journal, 2020, 58(5): 2014-2028 doi: 10.2514/1.J058877
|
[6] |
Qi FD, Xu GH. Research on multifunctional characteristics and application of ultralight porous metal materials based on structured. Materials Science Forum, 2020, 1: 67-72
|
[7] |
李世荣, 苏厚德, 程昌钧. 热环境中粘贴压电层功能梯度材料梁的自由振动. 应用数学和力学, 2009, 30(8): 907-918 (Li Shirong, Su Houde, Cheng Changjun. Free vibration of functionally graded material beams with surface-bonded piezoelectric layers in thermal environment. Applied Mathematics and Mechanics, 2009, 30(8): 907-918 (in Chinese) doi: 10.3879/j.issn.1000-0887.2009.08.003
|
[8] |
许新, 李世荣. 功能梯度材料微梁的热弹性阻尼研究. 力学学报, 2017, 49(2): 308-316 (Xu Xin, Li Shirong. Analysis of thermoelastic damping for functionally graded material micro-beam. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(2): 308-316 (in Chinese) doi: 10.6052/0459-1879-16-369
|
[9] |
范纪华, 陈立威, 王明强等. 旋转中心刚体-FGM梁刚柔热耦合动力学特性研究. 力学学报, 2019, 51(6): 1905-1917 (Fan Jihua, Chen Liwei, Wang Mingqiang, et al. Research on dynamics of a rigid-flexible-thermal coupling rotating HUB-FGM beam. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1905-1917 (in Chinese) doi: 10.6052/0459-1879-19-241
|
[10] |
Nikrad S, Kanellopoulos A, Bodaghi M, et al. Large deformation behavior of functionally graded porous curved beams in thermal environment. Archive of Applied Mechanics, 2021, 91: 2255-2278 doi: 10.1007/s00419-021-01882-9
|
[11] |
Akbas SD. Hygro-thermal nonlinear analysis of a functionally graded beam. Journal of Applied and Computational Mechanics, 2019, 5(2): 477-485
|
[12] |
Tang Y, Ding Q. Nonlinear vibration analysis of a bi-directional functionally graded beam under hygro-thermal loads. Composite Structures, 2019, 225: 111076 doi: 10.1016/j.compstruct.2019.111076
|
[13] |
Ansari R, Oskouie MF, Zargar M. Hygrothermally induced vibration analysis of bidirectional functionally graded porous beams. Transport in Porous Media, 2022, 142(1): 41-62
|
[14] |
Wang SY, Li QL. Thermoelastic dynamic responses near buckling of the non-conservative gradient porous beam in hygrothermal environments. Journal of Vibration Engineering & Technologies, 2023, in press
|
[15] |
李清禄, 王思瑶, 张靖华. 湿−热−机耦合梯度多孔材料梁的非线性力学行为. 航空材料学报, 2022, 42(3): 38-44 (Li Qinglu, Wang Siyao, Zhang Jinghua. Nonlinear mechanical behavior of graded porous material beam subjected to moisture-heat-mechanics loads. Journal of Aeronautical Materials. 2022, 42(3): 38-44 (in Chinese)
Li Qinglu, Wang Siyao, Zhang Jinghua. Nonlinear mechanical behavior of graded porous material beam subjected to moisture-heat-mechanics loads. Journal of Aeronautical Materials. 2022, 42(3): 38-44 (in Chinese)
|
[16] |
Wang S, Kang W, Yang W, et al. Hygrothermal effects on buckling behaviors of porous bi-directional functionally graded micro-/nanobeams using two-phase local/nonlocal strain gradient theory. European Journal of Mechanics - A/Solids, 2022, 94: 104554 doi: 10.1016/j.euromechsol.2022.104554
|
[17] |
Wang YQ, Zhao HL, Yang TH, et al. Thermo-hygro-mechanical bending and vibration of functionally graded material microbeams with microporosity defect. Journal of Thermal Stresses, 2019, 42(7): 815-834 doi: 10.1080/01495739.2019.1587325
|
[18] |
Jouneghani FZ, Dimitri R, Tornabene F. Structural response of porous FG nanobeams under hygro-thermo-mechanical loadings. Composites Part B: Engineering, 2018, 152: 71-78 doi: 10.1016/j.compositesb.2018.06.023
|
[19] |
戴婷, 戴宏亮, 李军剑等. 含孔隙变厚度FG圆板的湿热力学响应. 力学学报, 2019, 51(2): 512-523 (Dai Ting, Dai Hongliang, Li Junjian, et al. Hygrothermal mechanical behavior of a FG circular plate with variable thickness. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 512-523 (in Chinese)
Dai Ting, Dai Hongliang, Li Junjian, et al. Hygrothermal mechanical behavior of a FG circular plate with variable thickness. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 512-523 (in Chinese)
|
[20] |
Pham QH, Tran VK, Nguyen PC. Hygro-thermal vibration of bidirectional functionally graded porous curved beams on variable elastic foundation using generalized finite element method. Case Studies in Thermal Engineering, 2022, 40: 102478 doi: 10.1016/j.csite.2022.102478
|
[21] |
Chang X, Zhou J. Static and dynamic characteristics of post-buckling of porous functionally graded pipes under thermal shock. Composite Structures, 2022, 288: 115373 doi: 10.1016/j.compstruct.2022.115373
|
[22] |
Fu GM, Wang X, Wang BY, et al. Dynamic behavior of axially functionally graded pipe conveying gas-liquid two-phase flow. Applied Ocean Research, 2024, 142: 103827 doi: 10.1016/j.apor.2023.103827
|
[23] |
Hou FX, Wu SB, Moradi Z, et al. The computational modeling for the static analysis of axially functionally graded micro-cylindrical imperfect beam applying the computer simulation. Engineering with Computers, 2022, 38(4): 3217-3235
|
[24] |
Tang Y, Xu J, Yang T. Natural dynamic characteristics of a circular cylindrical Timoshenko tube made of three-directional functionally graded material. Applied Mathematics and Mechanics, 2022, 43(4): 479-496 doi: 10.1007/s10483-022-2839-6
|
[25] |
Tan X, Tang YQ. Free vibration analysis of Timoshenko pipes with fixed boundary conditions conveying high velocity fluid. Heliyon, 2023, 9(4): e14716 doi: 10.1016/j.heliyon.2023.e14716
|
[26] |
Ghadirian H, Mohebpour S, Malekzadeh P, et al. Nonlinear free vibrations and stability analysis of FG-CNTRC pipes conveying fluid based on Timoshenko model. Composite Structures, 2022, 292: 115637 doi: 10.1016/j.compstruct.2022.115637
|
[27] |
Zhang P, Fu YM. A higher-order beam model for tubes. European Journal of Mechanics - A/Solids, 2013, 38: 12-19 doi: 10.1016/j.euromechsol.2012.09.009
|
[28] |
Liu T, Li ZM, Jin S. Nonlinear bending analysis of anisotropic laminated tubular beams based on higher-order theory subjected to different kinds of distributed loads. International Journal of Pressure Vessels and Piping, 2018, 163: 23-35
|
[29] |
She GL, Yuan FG, Ren YR, et al. Nonlinear bending and vibration analysis of functionally graded porous tubes via a nonlocal strain gradient theory. Composite Structures, 2018, 203: 614-623 doi: 10.1016/j.compstruct.2018.07.063
|
[30] |
She GL, Yuan FG, Ren YR, et al. On buckling and postbuckling behavior of nanotubes. International Journal of Engineering Science, 2017, 121: 130-142 doi: 10.1016/j.ijengsci.2017.09.005
|
[31] |
Shen HS. A Two-step Perturbation Method in Nonlinear Analysis of Beams, Plates and Shells. Singapore: John Wiley & Sons, 2013
|
[32] |
Zhong J, Fu YM, Wan D, et al. Nonlinear bending and vibration of functionally graded tubes resting on elastic foundations in thermal environment based on a refined beam model. Applied Mathematical Modelling, 2016, 40(17): 7601-7614
|
[1] | Fan Shutong, Shen Yongjun. RESEARCH ON A VISCOELASTIC NONLINEAR ENERGY SINK UNDER HARMONIC EXCITATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(9): 2567-2576. DOI: 10.6052/0459-1879-22-193 |
[2] | Guan Xinyan, Fu Qingfei, Liu Hu, Yang Lijun. NUMERICAL SIMULATION OF OLDROYD-B VISCOELASTIC DROPLET COLLISION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(3): 644-652. DOI: 10.6052/0459-1879-22-020 |
[3] | Fan Shutong, Shen Yongjun. EXTENSION OF MULTI-SCALE METHOD AND ITS APPLICATION TO NONLINEAR VISCOELASTIC SYSTEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(2): 495-502. DOI: 10.6052/0459-1879-21-487 |
[4] | Fan Jihua, Zhang Dingguo, Shen Hong. RESEARCH ON ELASTIC LINE METHOD BASED ON ABSOLUTE NODAL COORDINATE METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(5): 1455-1465. DOI: 10.6052/0459-1879-19-076 |
[5] | Yang Junhui, Meng Shangyang, Lei Yongjun. THE INCREMENTAL ENRICHED FINITE ELEMENT METHOD FOR FRACTURE ANALYSIS OF VISCOELASTIC INTERFACE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(3): 482-492. DOI: 10.6052/0459-1879-14-391 |
[6] | Efficient computational method for dynamics of flexible multibody systems based on absolute nodal coordinate[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(6): 1197-1205. DOI: 10.6052/0459-1879-2010-6-lxxb2009-543 |
[7] | Weijie Li, Baolin Wang, Xinhong Zhang. Viscoelastic fracture of a functionally graded material strip[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(3): 402-406. DOI: 10.6052/0459-1879-2008-3-2006-468 |
[8] | Weiyi Chen, Quanyou Zhang, Xiaochun Wei, Xiaohu Wang, Xiaona Li. Viscoelastic properties of chondrocytes isolated from normal and osteoarthritic rabbit knee cartilage[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 39(4): 517-521. DOI: 10.6052/0459-1879-2007-4-2006-466 |
[9] | SOLUTION OF VISCOELASTIC AND ORIHOTROPIC HALF-SPACE SUBJECTED TO TORSION[J]. Chinese Journal of Theoretical and Applied Mechanics, 1995, 27(1): 117-121. DOI: 10.6052/0459-1879-1995-1-1995-413 |
[10] | 基于变形动力学模型的黏弹性材料本构关系[J]. Chinese Journal of Theoretical and Applied Mechanics, 1993, 25(3): 375-379. DOI: 10.6052/0459-1879-1993-3-1995-655 |