Citation: | Zhao Xiaoyu, Wu Weiguo, Lin Yongshui. Low-frequency vibration reduction design and application of waveguide absorber. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(11): 2636-2646. DOI: 10.6052/0459-1879-23-146 |
[1] |
杨根仓. 现代阻尼材料的发展与展望. 航空科学技术, 1994, 3: 12-13 (Yang Gencang. Development and prospects of modern damping materials. Aeronautical Science &Technology, 1994, 3: 12-13 (in Chinese)
Yang Gencang. Development and Prospects of Modern Damping Materials [J]. Aeronautical Science & Technology, 1994, (3): 12-13. (in Chinese))
|
[2] |
黄加才, 游少雄, 赵云峰. 板类约束阻尼结构的层间厚度参数优化. 宇航材料工艺, 2013, 43(1): 32-34 (Huang Jiacai, You Shaoxiong, Zhao Yunfeng. Optimization method to optimize layer thickness for constrained damping plate. Aerospace Materials and Technology, 2013, 43(1): 32-34 (in Chinese) doi: 10.3969/j.issn.1007-2330.2013.01.006
Huang Jiacai. Optimization method to optimize layer thickness for constrained damping plate [J]. Aerospace Materials and Technology, 2013, 43(01): 32-34. (in Chinese)) doi: 10.3969/j.issn.1007-2330.2013.01.006
|
[3] |
朱光耀, 刘树生, 闻坤等. 复合材料减振强化板的阻尼性能分析. 上海汽车, 2022, 1: 51-54 (Zhu Guangyao, Liu Shusheng, Wen Kun, et al. Analysis of damping performance of composite material vibration reduction strengthening plate. Shanghai Automotive, 2022, 1: 51-54 (in Chinese) doi: 10.3969/j.issn.1007-4554.2022.01.10
Zhu Guangyao, Liu Shusheng, Wen Kun, et al. Analysis of Damping Performance of Composite Material Vibration Reduction Strengthening Plate [J]. Shanghai Automotive, 2022, (1): 51-54. (in Chinese)) doi: 10.3969/j.issn.1007-4554.2022.01.10
|
[4] |
周奇郑, 郭彭, 骆子寅等. 基于局域共振的舰船浮筏低频减振方法. 中国机械工程, 2022, 33(17): 2046-2052 (Zhou Qizheng, Guo Peng, Luo Ziyin, et al. Low frequency vibration reduction method of ship floating rafts based on local resonance. China Mechanical Engineering, 2022, 33(17): 2046-2052 (in Chinese) doi: 10.3969/j.issn.1004-132X.2022.17.005
Zhou Qizhen, Guo Peng, Luo Ziyan, et al. Low Frequency Vibration Reduction Method of Ship Floating Rafts Based on Local Resonance [J]. China Mechanical Engineering, 2022, 33(17): 2046-2052. (in Chinese)) doi: 10.3969/j.issn.1004-132X.2022.17.005
|
[5] |
尹文汉, 孙飞飞, 刘静涵等. 分布振子复合板的模态阻尼及多点激励下阻尼减振相关性. 力学季刊, 2022, 43(3): 512-525 (Yin Wenhan, Sun Feifei, Liu Jinghan, et al. Modal damping of composite plate distributed with dissipative oscillators and its correlation with vibration mitigation performance under multi-point excitation. Chinese Quarterly of Mechanics, 2022, 43(3): 512-525 (in Chinese)
Yi Wenhan, Sun Feifei, Liu Jinghan, et al. Modal Damping of Composite Plate Distributed with Dissipative Oscillators and Its Correlation with Vibration Mitigation Performance under Multi-Point Excitation [J]. Chinese Quarterly of Mechanics, 2022, 43(03): 512-525. (in Chinese))
|
[6] |
Krylov VV. New type of vibration dampers utilising the effect of acoustic 'black holes'. Acta Acustica united with Acustica, 2004, 90(5): 830-837
|
[7] |
Krylov VV, Winward R. Experimental investigation of the acoustic black hole effect for flexural waves in tapered plates. Journal of Sound and Vibration, 2007, 300(1-2): 43-49 doi: 10.1016/j.jsv.2006.07.035
|
[8] |
Bayod J. Experimental study of vibration damping in a modified elastic wedge of power-law profile. Journal of Vibration and Acoustics, 2011, 133(6): 061003 doi: 10.1115/1.4003591
|
[9] |
Ji HL, Wang N, Zhang C, et al. A vibration absorber based on two-dimensional acoustic black holes. Journal of Sound and Vibration, 2021, 500: 116024 doi: 10.1016/j.jsv.2021.116024
|
[10] |
Li HQ, Touzé C, Pelat A, et al. Combining nonlinear vibration absorbers and the acoustic black hole for passive broadband flexural vibration mitigation. International Journal of Non-Linear Mechanics, 2021, 129: 103558 doi: 10.1016/j.ijnonlinmec.2020.103558
|
[11] |
王博涵, 杨德庆, 夏利福. 内嵌声学黑洞薄板振动特性数值模拟方法研究. 中国舰船研究, 2019, 14(4): 30-39 (Wang Bohan, Yang Deqing, Xia Lifu. Study on numerical simulation method for vibration characteristics of shell embedded with acoustic black hole. Chinese Journal of Ship Research, 2019, 14(4): 30-39 (in Chinese) doi: 10.19693/j.issn.1673-3185.01366
Wang Bohan, Yang Deqing, Xia Lifu. Study On Numerical Simulation Method for Vibration Characteristics of Shell Embedded With Acoustic Black Hole [J]. Chinese Journal of Ship Research, 2019, 14(04): 30-39. (in Chinese)) doi: 10.19693/j.issn.1673-3185.01366
|
[12] |
Shepherd MR, Feurtado PA, Conlon SC. Multi-objective optimization of acoustic black hole vibration absorbers. Journal of the Acoustical Society of America, 2016, 140(3): EL227 doi: 10.1121/1.4961735
|
[13] |
Huang W, Zhang H, Inman DJ, et al. Low reflection effect by 3 d printed functionally graded acoustic black holes. Journal of Sound and Vibration, 2019, 450: 96-108 doi: 10.1016/j.jsv.2019.02.043
|
[14] |
Fu QD, Wu JW, Yu CY, et al. Parametric studies and optimal design of the exponents collocation of a segmented acoustic black hole beam. Applied Acoustics, 2022, 200: 109086 doi: 10.1016/j.apacoust.2022.109086
|
[15] |
Mccormick CA, Shepherd MR. Optimization of an acoustic black hole vibration absorber at the end of a cantilever beam. The Journal of the Acoustical Society of America, 2019, 145(6): EL593-EL597 doi: 10.1121/1.5113960
|
[16] |
康钦伟. 基于声学黑洞的复合阻波基座宽带减振性能研究及低频优化. [硕士论文]. 镇江: 江苏科技大学, 2022
Kang Qinwei. Research on broadband vibration reduction performance and low frequency optimization of composite wave blocking base based on acoustic black hole. [Master Thesis]. Zhenjiang: Jiangsu University of Science and Technology, 2022 (in Chinese))
|
[17] |
Morvan O, Renault D, Butaud P, et al. Damping control for improvement of acoustic black hole effect. Journal of Sound and Vibration, 2019, 454: 63-72 doi: 10.1016/j.jsv.2019.04.029
|
[18] |
Guillaume R, Adrien P, Morvan O, et al. Zero reflections by a 1 d acoustic black hole termination using thermally controlled damping. Journal of Sound and Vibration, 2021, 510: 116282 doi: 10.1016/j.jsv.2021.116282
|
[19] |
Tang LL, Cheng L. Enhanced acoustic black hole effect in beams with a modified thickness profile and extended platform. Journal of Sound and Vibration, 2017, 391: 116-126 doi: 10.1016/j.jsv.2016.11.010
|
[20] |
颜伏伍, 张家铭, 李良栋等. 基于二维声学黑洞结构的面板振动噪声控制理论. 塑性工程学报, 2021, 28(7): 184-192 (Yan Fuwu, Zhang Jiaming, Li Liangdong, et al. Theory of vibration and noise control of panel based on two-dimensional acoustic black hole structure. Journal of Plasticity Engineering, 2021, 28(7): 184-192 (in Chinese) doi: 10.3969/j.issn.1007-2012.2021.07.026
Yan Fuwu, Zhang Jiaming, Li Liangdong, et al. Theory of vibration and noise control of panel based on two-dimensional acoustic black hole structure [J]. Journal of Plasticity Engineering, 2021, 28(07): 184-192. (in Chinese) doi: 10.3969/j.issn.1007-2012.2021.07.026
|
[21] |
Feurtado PA, Conlon SC. Transmission loss of plates with embedded acoustic black holes. The Journal of the Acoustical Society of America, 2017, 142(3): 1390 doi: 10.1121/1.5001503
|
[22] |
王小东, 季宏丽, 裘进浩. 声学黑洞原理的双层加筋板−腔系统降噪研究. 振动工程学报, 2022, 35(2): 503-513 (Wang Xiaodong, Ji Hongli, Qiu Jinhao. Noise reduction of a double-layer stiffened plate-cavity system based on acoustic black hole principle. Journal of Vibration Engineering, 2022, 35(2): 503-513 (in Chinese)
Wang Xiaodong, Ji Hongli, Qiu Jinhao. Noise Reduction of A Double-Layer Stiffened Plate-Cavity System Based on Acoustic Black Hole Principle [J]. Journal of Vibration Engineering, 2022, 35(02): 503-513. (in Chinese))
|
[23] |
Kim SY, Lee D. Numerical simulation of characteristics of wave propagation and reflection coefficient in a helix-acoustic black hole. Journal of Vibration and Control, 2020, 28(5-6): 615-625
|
[24] |
何璞. 新型声学黑洞阻尼振子的设计及振动控制应用研究. [硕士论文]: 南京: 南京航空航天大学, 2020
He Pu. Research on design and vibration control application of a novel acoustic black hole damping absorber. [Master Thesis]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020 (in Chinese))
|
[25] |
Zhou T, Chen L. A resonant beam damper tailored with acoustic black hole features for broadband vibration reduction. Journal of Sound and Vibration, 2018, 430: 174-184 doi: 10.1016/j.jsv.2018.05.047
|
[26] |
Lee JY, Jeon W. Vibration damping using a spiral acoustic black hole. Journal of the Acoustical Society of America, 2017, 141(3): 1437 doi: 10.1121/1.4976687
|
[27] |
Park S, Kim M, Jeon W. Experimental validation of vibration damping using an archimedean spiral acoustic black hole. Journal of Sound and Vibration, 2019, 459: 114838 doi: 10.1016/j.jsv.2019.07.004
|
[28] |
Park S, Lee JY, Jeon W. Vibration damping of plates using waveguide absorbers based on spiral acoustic black holes. Journal of Sound and Vibration, 2022, 521: 116685 doi: 10.1016/j.jsv.2021.116685
|
[29] |
Mironov M. Propagation of a flexural wave in a plate whose thickness decreases smoothly to zero in a finite interval. Soviet Physics Acoustics, 1988, 34(1): 318-319
|
[30] |
Aklouche O, Pelat A, Maugeais S, et al. Scattering of flexural waves by a pit of quadratic profile inserted in an infinite thin plate. Journal of Sound and Vibration, 2016, 375: 38-52 doi: 10.1016/j.jsv.2016.04.034
|
[31] |
Lee YJ, Jeon W. Wave-based analysis of the cut-on frequency of curved acoustic black holes. Journal of Sound and Vibration, 2021, 492(3): 115731
|
[32] |
Denis V, Gautier F, Pelat A, et al. Measurement and modelling of the reflection coefficient of an acoustic black hole termination. Journal of Sound and Vibration, 2015, 349: 67-79 doi: 10.1016/j.jsv.2015.03.043
|
[1] | Xu Huidong, Wang Yiping, He Dongping, Zhou Biliu, Zhang Wei. RESEARCH ON THE VIBRATION REDUCTION CHARACTERISTICS OF ROLLING MILL ROLL SYSTEM WITH ACTIVE AND PASSIVE DAMPING SHOCK ABSORBERS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(9): 2713-2730. DOI: 10.6052/0459-1879-24-079 |
[2] | Xing Jingdian, Li Xianghong, Shen Yongjun. VIBRATION REDUCTION MECHANISM OF NONLINEAR ZENER SYSTEM UNDER COMBINED PARAMETRIC AND EXTERNAL EXCITATIONS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(10): 2393-2404. DOI: 10.6052/0459-1879-23-294 |
[3] | Zhang Kangyu, Lu Kuan, Cheng Hui, Fu Chao, Guo Dong. DYNAMIC MODELING AND VIBRATION AND NOISE REDUCTION OF AUTONOMOUS UNDERWATER VEHICLES BASED ON RESONANCE CHANGER[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(10): 2274-2287. DOI: 10.6052/0459-1879-23-217 |
[4] | Liu Guoping, Yang Zhaoshu, He Zhongbo, Zhou Jingtao, Sun Minzheng. DESIGN AND MODELING OF ELECTRET VIBRATION SUPPRESSION AND ENERGY HARVESTING DEVICE ORIENTED TO MICRO-VIBRATION SIGNALS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(1): 169-181. DOI: 10.6052/0459-1879-22-444 |
[5] | Wan Honglin, Li Xianghong, Shen Yongjun, Wang Yanli. STUDY ON VIBRATION REDUCTION OF DYNAMIC VIBRATION ABSORBER FOR TWO-SCALE DUFFING SYSTEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(11): 3136-3146. DOI: 10.6052/0459-1879-22-286 |
[6] | Zhongwen Pan, Jianwei Xing, Lei Wang, Shenyan Chen. RESEARCH ON WHOLE-SPACECRAFT VIBRATION ISOLATION BASED ON PARALLEL LOAD-BEARING AND DAMPING SYSTEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 364-370. DOI: 10.6052/0459-1879-18-285 |
[7] | Zhou Haian, Wang Xiaoming, Mei Yulin. HEORETICAL ANALYSIS OF THE VIBRATION AND SOUND RADIATION FROM AN INFINITE FLUID-STRUCTURE COUPLED PLATE STIFFENED BY TWO-DIMENSIONAL PERIODIC STRUCTURES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(2): 287-296. DOI: 10.6052/0459-1879-2012-2-20120212 |
[8] | Yanying Zhao Jian Xu. Using the delayed feedback to control the vibration of the auto-parametric dynamical system[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(5): 894-904. DOI: 10.6052/0459-1879-2011-5-lxxb2010-652 |
[9] | Yanying Zhao, Jian Xu. Mechanism analysis of delayed nonlinear vibration absorber[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(1): 98-106. DOI: 10.6052/0459-1879-2008-1-2007-078 |
[10] | Hongnan Li, Jun Li, Gangbing Song. Improved suboptimal Bang-Bang control of aseismic buildings with variable friction dampers[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(1): 101-109. DOI: 10.6052/0459-1879-2007-1-2005-601 |
1. |
程祎博,王晓明,梅玉林. 基于声学黑洞的声学迷宫结构的优化设计. 振动与冲击. 2025(01): 332-342 .
![]() | |
2. |
程朝阳,任盛伟,王宁,王强,马鹏,韩志,魏世斌,马晓明. 轨道几何水平动态检测算法. 铁道建筑. 2025(01): 45-48 .
![]() |