EI、Scopus 收录
中文核心期刊
Huang Shiping, Chen Xiao, Xiao Mingqiang. Study on friction behavior of fractal rough surface based on molecular dynamics-Green’s function method. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(7): 1484-1492. DOI: 10.6052/0459-1879-23-133
Citation: Huang Shiping, Chen Xiao, Xiao Mingqiang. Study on friction behavior of fractal rough surface based on molecular dynamics-Green’s function method. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(7): 1484-1492. DOI: 10.6052/0459-1879-23-133

STUDY ON FRICTION BEHAVIOR OF FRACTAL ROUGH SURFACE BASED ON MOLECULAR DYNAMICS-GREEN’S FUNCTION METHOD

  • Received Date: April 07, 2023
  • Accepted Date: May 30, 2023
  • Available Online: May 31, 2023
  • The surface friction between any object can be regarded as the friction between rough surfaces, and most rough surfaces have fractal characteristics. In order to study the friction behavior of fractal rough surface, the molecular dynamics-Green’s function method (GFMD) is used to establish the microscopic fractal rough surface. The contact and friction processes of fractal rough surface are controlled by displacement loading, and the contact cluster distribution is identified by breadth-first search algorithm. Then, the maximum friction coefficient and friction force at atomic scale, contact cluster scale and interface scale are calculated respectively. The influence matrix method is used to study the interaction between contact clusters in the friction process, and the influence of the distance between contact clusters and the area of contact clusters on the interaction is analyzed. The results show that the friction coefficient decreases from small scale to large scale during the friction process. The friction force fluctuates periodically with the displacement. The contact clusters don’t reach the maximum friction force at the same time, but local slip occurs. The contact clusters slipping first will accelerate the slip of other contact clusters, and the friction force obtained by the global slip model is the upper limit of the molecular simulation results. The influence matrix method can simulate the interaction of contact clusters well. The maximum friction force calculated by using the influence matrix is basically consistent with the result of GFMD model, and the maximum friction force calculated by ignoring the influence of local slip is 20% larger than the result of GFMD model, indicating that local slip has a great influence on the friction force. The interaction between contact clusters is inversely proportional to the distance and proportional to the area. The results can provide theoretical basis for interface analysis and optimization of fractal rough surface.
  • [1]
    温诗铸, 黄平. 摩擦学原理. 北京: 清华大学出版社, 2002

    Wen Shizhu, Huang Ping. Principles of Tribology. Beijing: Tsinghua University Press, 2002 (in Chinese)
    [2]
    Huang SP, Misra A. Micro-macro-shear-displacement behavior of contac-ting rough solids. Tribology Letters, 2013, 51: 431-436 doi: 10.1007/s11249-013-0178-y
    [3]
    Misra A, Huang SP. Micromechanical stress-displacement model for rough interfaces: Effect of asperity contact orientation on closure and shear behavior. International Journal of Solids and Structures, 2012, 49(1): 111-120 doi: 10.1016/j.ijsolstr.2011.09.013
    [4]
    Knothe K. Contact Mechanics and Friction: Physical Principles and Applications. London: SAGE Publications Sage UK, 2011
    [5]
    Greenwood JA, Williamson JBP. Contact of nominally flat surfaces. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1966, 295(1442): 300-319
    [6]
    Majumdar A, Bhushan B. Fractal model of elastic-plastic contact between rough surfaces. Journal of Tribology, 1991, 113 (1): 1-11
    [7]
    Chang W, Etsion I, Bogy DB. An elastic-plastic model for the contact of rough surfaces. Journal of Tribology, 1987, 109 (2): 257-263
    [8]
    Pérez-Ràfols F, Almqvist A. On the stiffness of surfaces with non-Gaussian height distribution. Scientific Reports, 2021, 11(1): 1863 doi: 10.1038/s41598-021-81259-8
    [9]
    Popov Vl, Filippov AE. Force of friction between fractal rough surface and elastome. Technical Physics Letters, 2010, 36: 525-527 doi: 10.1134/S1063785010060118
    [10]
    李玲, 何本帅, 王晶晶等. 粗糙表面微凸体模型构建与接触特性分析. 振动与冲击, 2023, 42(2): 43-50 (Li Ling, He Benshuai, Wang Jingjing, et al. Modeling and contact characteristics analysis of micro-convex body with rough surface. Journal of Vibration and Shock, 2023, 42(2): 43-50 (in Chinese) doi: 10.13465/j.cnki.jvs.2023.02.006

    Li Ling, He Benshuai, Wang Jingjing, et al. Modeling and Contact Characteristics Analysis of Micro-Convex Body with Rough Surface. Journal of Vibration and Shock, 2023, 42 (02): 43-50 (in Chinese) doi: 10.13465/j.cnki.jvs.2023.02.006
    [11]
    Feng Y, Yang P, Zhang YY, et al. Fractal model of thermal elasto-plastic contact of rough surfaces. Journal of Central South University, 2022, 29(5): 1500-1509 doi: 10.1007/s11771-022-5017-6
    [12]
    Chen PJ, Chen SH. Thermo-mechanical contact behavior of a finite graded layer under a sliding punch with heat generation. International Journal of Solids and Structures, 2013, 50(7-8): 1108-1119 doi: 10.1016/j.ijsolstr.2012.12.007
    [13]
    Chen SH, Yan C, Zhang P, et al. Mechanics of adhesive contact on a power-law graded elastic half-space. Journal of the Mechanics and Physics of Solids, 2009, 57(9): 1437-1448 doi: 10.1016/j.jmps.2009.06.006
    [14]
    占旺龙, 李卫, 黄平. 基于 Iwan 模型的接合面切向响应建模. 力学学报, 2020, 52(2): 462-471 (Zhan Wanglong, Li Wei, Huang Ping. Tangential response modeling of joint surface based on Iwan Model. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 462-471 (in Chinese) doi: 10.6052/0459-1879-19-343

    Zhan Wanglong, Li Wei, Huang Ping. Tangential response modeling of joint surface based on Iwan Model. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52 (2): 462-471 (in Chinese) doi: 10.6052/0459-1879-19-343
    [15]
    周华, 龙新华, 孟光. 基于分形理论的两粗糙表面接触的黏滑摩擦模型. 振动工程学报, 2022, 35(4): 895-902 (Zhou Hua, Long Xinhua, Meng Guang. Viscoslip friction model of contact between two rough surfaces based on fractal theory. Journal of Vibration Engineering, 2022, 35(4): 895-902 (in Chinese)

    Zhou Hua, Long Xinhua, Meng Guang. Viscoslip Friction Model of Contact between Two Rough Surfaces Based on Fractal Theory. Journal of Vibration Engineering, 2022, 35 (04): 895-902 (in Chinese)
    [16]
    Kogut L, Etsion I. Elastic-plastic contact analysis of a sphere and a rigid flat. Journal of Applied Mechanics, 2002, 69(5): 657-662 doi: 10.1115/1.1490373
    [17]
    Sofuoglu H, Ozer A. Thermomechanical analysis of elastoplastic medium in sliding contact with fractal surface. Tribology International, 2008, 41(8): 783-796 doi: 10.1016/j.triboint.2008.01.010
    [18]
    Sellgren U, Björklund S, Andersson S. A finite element-based model of normal contact between rough surfaces. Wear, 2003, 254(11): 1180-1188 doi: 10.1016/S0043-1648(03)00332-6
    [19]
    Nadimi S, Angelidakis V, Otsubo M, et al. How can the effect of particle surface roughness on the contact area be predicted? Computers and Geotechnics, 2022, 150: 104890 doi: 10.1016/j.compgeo.2022.104890
    [20]
    阮晓光, 麻诗韵, 李玲等. 微动接触中分形粗糙表面的接触应力研究. 机械设计与制造, 2021, 5: 139-143, 148 (Ruan Xiaoguang, Ma Shiyun, Li Ling, et al. Contact stress of fractal rough surface in fretting contact. Machinery Design & Manufacture, 2021, 5: 139-143, 148 (in Chinese) doi: 10.3969/j.issn.1001-3997.2021.05.033

    Ruan Xiaoguang, Ma Shiyun, Li Ling, et al. Contact Stress of Fractal Rough Surface in Fretting Contact. Machinery Design & Manufacture, 2021 (05): 139-143 + 148 (in Chinese) doi: 10.3969/j.issn.1001-3997.2021.05.033
    [21]
    王权, 庄宿国, 刘秀波等. 铜镍合金滑动摩擦学行为的分子动力学模拟. 摩擦学学报, 2023, 出版中

    Wang Quan, Zhuang Suguo, Liu Xiubo, et al. Molecular dynamics simulation of sliding tribological behavior of copper-nickel alloys. Journal of Tribology, 2023, in press (in Chinese)
    [22]
    范立峰, 赵璐, 聂雯等. 界面分形参数对法向接触刚度影响的研究. 工程力学, 2021, 38(7): 207-215 (Fan Lifeng, Zhao Lu, Nie Wen, et al. Influence of interface fractal parameters on normal contact stiffness. Engineering Mechanics, 2021, 38(7): 207-215 (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.07.0477

    Fan Lifeng, Zhao Lu, Nie Wen, et al. Influence of Interface Fractal Parameters on Normal Contact Stiffness. Engineering Mechanics, 2021, 38 (07): 207-215 (in Chinese) doi: 10.6052/j.issn.1000-4750.2020.07.0477
    [23]
    Song JF, Wang WW, Lang YD, et al. Double rough surface contact model and finite element simulation based on fractal theory. Journal of Physics: Conference Series, 2021, 1877: 012016
    [24]
    Campaná C, Müser MH. Practical Green’s function approach to the simulation of elastic semi-infinite solids. Physical Review B, 2006, 74(7): 075420 doi: 10.1103/PhysRevB.74.075420
    [25]
    Sharp TA, Pastewka L, Robbins MO. Elasticity limits structural superlubricity in large contacts. Physical Review B, 2016, 93(12): 121402 doi: 10.1103/PhysRevB.93.121402
    [26]
    Pastewka L, Sharp TA, Robbins MO. Seamless elastic boundaries for atomistic calculations. Physical Review B, 2012, 86(7): 075459 doi: 10.1103/PhysRevB.86.075459
    [27]
    Huang SP. Evolution of the contact area with normal load for rough surfaces: from atomic to macroscopic scales. Nanoscale Research Letters, 2017, 12(1): 592 doi: 10.1186/s11671-017-2362-8
    [28]
    Mo Y, Turner KT, Szlufarska I. Friction laws at the nanoscale. Nature, 2009, 457(7233): 1116-1119 doi: 10.1038/nature07748
    [29]
    Luan BQ, Robbins MO. The breakdown of continuum models for mechanical contacts. Nature, 2005, 435(7044): 929-932 doi: 10.1038/nature03700
    [30]
    Persson BNJ. Relation between interfacial separation and load: a general theory of contact mechanics. Physical Review Letters, 2007, 99(12): 125502 doi: 10.1103/PhysRevLett.99.125502
    [31]
    Mubin S, Li J, Plimpton S. Extending and Modifying LAMMPS Writing Your Own Source Code: A Pragmatic Guide to Extending LAMMPS as Per Custom Simulation Requirements. Birmingham: Packt Publishing Ltd, 2021
    [32]
    Barbot S, Fialko Y. Fourier-domain Green's function for an elastic semi-infinite solid under gravity, with applications to earthquake and volcano deformation. Geophysical Journal International, 2010, 182(2): 568-582 doi: 10.1111/j.1365-246X.2010.04655.x
    [33]
    Amba-Rao CL. Fourier transform methods in elasticity problems and an application. Journal of the Franklin Institute, 1969, 287(3): 241-249 doi: 10.1016/0016-0032(69)90100-8
    [34]
    Filippova VP, Kunavin SA, Pugachev MS. Calculation of the parameters of the Lennard-Jones potential for pairs of identical atoms based on the properties of solid substances. Inorganic Materials: Applied Research, 2015, 6: 1-4 doi: 10.1134/S2075113315010062
  • Related Articles

    [1]Zhou Yongfeng, Li Jie. ANALYTICAL SOLUTIONS OF THE GENERALIZED PROBABILITY DENSITY EVOLUTION EQUATION WITH MULTIDIMENSIONAL RANDOM VARIABLES: THE CASE OF EULER-BERNOULLI BEAM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(9): 2659-2668. DOI: 10.6052/0459-1879-24-001
    [2]He Chao, Jia Yuanping, Zhou Shunhua. THREE-DIMENSIONAL ANALYTICAL METHOD FOR CALCULATING VIBRATIONS OF A COUPLED TUNNEL-SOIL-FLUID SYSTEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(6): 1329-1341. DOI: 10.6052/0459-1879-22-543
    [3]Wang Zhechao, Jia Wenjie, Feng Xiating, Wang Jingkui. ANALYTICAL SOLUTION OF LIMIT STORAGE PRESSURES FOR TUNNEL TYPE LINED GAS STORAGE CAVERNS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(3): 710-718. DOI: 10.6052/0459-1879-22-474
    [4]Shi Hemu, Zeng Xiaohui, Wu Han. ANALYTICAL SOLUTION OF THE HUNTING MOTION OF A WHEELSET NONLINEAR DYNAMICAL SYSTEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(7): 1807-1819. DOI: 10.6052/0459-1879-22-003
    [5]Xu Sihui, Wang Binglong, Zhou Shunhua, Yang Xinwen, Li Yaochen. APPROXIMATE THEORY AND ANALYTICAL SOLUTION FOR DYNAMIC CALCULATION OF VISCOELASTIC LAYERED PERIODIC PLATE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(6): 1348-1359. DOI: 10.6052/0459-1879-17-248
    [6]Jiang Zhongming, Li Jie. ANALYTICAL SOLUTIONS OF THE GENERALIZED PROBABILITY DENSITY EVOLUTION EQUATION OF THREE CLASSES STOCHASTIC SYSTEMS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(2): 413-421. DOI: 10.6052/0459-1879-15-221
    [7]Wang Yingze, Wang Qian, Liu Dong, Song Xinnan. ASYMPTOTIC ANALYSIS OF SOLID SPHERE SUBJECTED TO THERMAL SHOCK UNDER FRACTIONAL ORDER GENERALIZED THERMOELASTICITY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(2): 248-254. DOI: 10.6052/0459-1879-13-287
    [8]Li Yaochen, Nie Guojun, Yang Changjin. APPROXIMATE THEORY AND ANALYTICAL SOLUTION FOR RECTANGULAR PLATES WITH IN-PLANE STIFFNESS GRADIENT[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(4): 560-567. DOI: 10.6052/0459-1879-12-318
    [9]Yaochen Li, Feng Qi, Zheng Zhong. Simplified theory and analytical solutions for functionally graded piezoelectric circular plate[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(5): 636-645. DOI: 10.6052/0459-1879-2008-5-2007-145
    [10]THE ANALYTICAL SOLUTION OF DIFFERENTIAL EQUATION OF ELASTIC CURVED SURFACE OF STEPPED THIN RECTANGULAR PLATE ON WINKLER'S FOUNDATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 1992, 24(6): 754-762. DOI: 10.6052/0459-1879-1992-6-1995-800

Catalog

    Article Metrics

    Article views (584) PDF downloads (105) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return