Citation: | Wang Yongshuai, Wang Xincheng, Cheng Huaiyu, Ji Bin. Numerical simulation of propeller tip vortex cavitation inception considering the effect of nuclei growth and collapse. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(7): 1417-1427. DOI: 10.6052/0459-1879-23-080 |
[1] |
Brandao FL, Bhatt M, Mahesh K. Numerical study of cavitation regimes in flow over a circular cylinder. Journal of Fluid Mechanics, 2020, 885: A19
|
[2] |
Zhang YL, Xu WL, Zhang FX, et al. Collapsing characteristics of gas-bearing cavitation bubble. Journal of Hydrodynamics, 2019, 31(1): 66-75 doi: 10.1007/s42241-018-0094-6
|
[3] |
张维鹏, 任建新, 郭航等. 舵几何特征对桨−舵系统尾流场演化的影响. 力学学报, 2023, 55(2): 318-329 (Zhang Weipeng, Ren Jianxin, Guo Hang, et al. Impact of rudder geometry on the wake evolutions of propeller-rudder interaction. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(2): 318-329 (in Chinese) doi: 10.6052/0459-1879-22-552
Zhang Weipeng, Ren Jianxin, Guo Hang et al. Impact of rudder geometry on the wake evolutions of propeller-rudder interaction. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(2): 318-329 (in Chinese) doi: 10.6052/0459-1879-22-552
|
[4] |
郭春雨, 徐鹏, 韩阳等. 自由面对潜艇尾流场流动特性影响研究. 力学学报, 2021, 53(1): 156-167 (Guo Chunyu, Xu Peng, Han Yang, et al. Research on the influence of free surface on the flow characteristics of submarine wake. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(1): 156-167 (in Chinese)
Guo Chunyu, Xu Peng, Han Yang, et al. Research on the influence of free surface on the flow characteristics of submarine wake. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(1): 156-167 (in Chinese)
|
[5] |
Viitanen V, Sipila T, Sanchez-Caja A, et al. CFD predictions of unsteady cavitation for a marine propeller in oblique inflow. Ocean Engineering, 2022, 266: 112596 doi: 10.1016/j.oceaneng.2022.112596
|
[6] |
Wang YS, He CH, Wang XC, et al. Influence of skew angle on the cavitation dynamics and induced low-frequency pressure fluctuations around a marine propeller. Ocean Engineering, 2023, 277: 114302 doi: 10.1016/j.oceaneng.2023.114302
|
[7] |
Venning JA, Pearce BW, Brandner PA. Nucleation effects on cloud cavitation about a hydrofoil. Journal of Fluid Mechanics, 2022, 947: A1 doi: 10.1017/jfm.2022.535
|
[8] |
Mccormick Jr BW. On cavitation produced by a vortex trailing from a lifting surface. Journal of Fluid Engineering, 1962, 84(3): 369-378
|
[9] |
Shen YT, Gowing S, Jessup S. Tip vortex cavitation inception scaling for high Reynolds number applications. Journal of Fluid Engineering, 2009, 131(7): 071301 doi: 10.1115/1.3130245
|
[10] |
Higuchi H, Arndt R, Rogers M. Characteristics of tip vortex cavitation noise. Journal of Fluid Engineering, 1989, 114(4): 495-501
|
[11] |
Ji B, Luo XW, Peng XX, et al. Numerical analysis of cavitation evolution and excited pressure fluctuation around a propeller in non-uniform wake. International Journal of Multiphase Flow, 2012, 43: 13-21 doi: 10.1016/j.ijmultiphaseflow.2012.02.006
|
[12] |
Sezen S, Atlar M. Mitigation of hub vortex cavitation with application of roughness. Journal of Marine Science and Engineering, 2022, 10(10): 1426 doi: 10.3390/jmse10101426
|
[13] |
Katsuno ET, Dantas JLD. Blockage effect influence on model-scale marine propeller performance and cavitation pattern. Applied Ocean Research, 2022, 120: 103019 doi: 10.1016/j.apor.2021.103019
|
[14] |
Long Y, Han HQ, Ji B, et al. Numerical investigation of the influence of vortex generator on propeller cavitation and hull pressure fluctuation by DDES. Journal of Hydrodynamics, 2022, 34(3): 444-450
|
[15] |
Sezen S, Atlar M. Marine propeller underwater radiated noise prediction with the FWH acoustic analogy. Part 3: Assessment of full-scale propeller hydroacoustic performance versus sea trial data. Ocean Engineering, 2022, 66(2): 112712
|
[16] |
Sajedi H, Mahdi M. Investigation of the effect of propeller flexibility on cavitation formation and hydrodynamic coefficients. Journal of Marine Science and Technology, 2022, 27(3): 1116-1129
|
[17] |
Ng’aru JM, Park S. CFD simulations of the effect of equalizing duct configurations on cavitating flow around a propeller. Journal of Marine Science and Engineering, 2022, 10(12): 1865 doi: 10.3390/jmse10121865
|
[18] |
Spall RE. Numerical study of a wing-tip vortex using the Euler equations. Journal of Aircraft, 2001, 38(1): 22-27 doi: 10.2514/2.2756
|
[19] |
Rayleigh L. On the pressure developed in a liquid during the collapse of a spherical cavity. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1917, 34(200): 94-98 doi: 10.1080/14786440808635681
|
[20] |
Plesset MS. The dynamics of cavitation bubbles. Journal of Applied Mechanics, 1949, 16(3): 277-282 doi: 10.1115/1.4009975
|
[21] |
Trilling L. The collapse and rebound of a gas bubble. Journal of Applied Physics, 1952, 23(1): 14-17 doi: 10.1063/1.1701962
|
[22] |
Gilmore FR. The growth or collapse of a spherical bubble in a viscous compressible liquid. Technical Report No. 26-4, California Institute of Technology, 1952
|
[23] |
Zhao XT, Cheng HY, Ji B. The effect of flow speed on the bubble dynamics: A numerical study. Ocean Engineering, 2022, 259: 111888 doi: 10.1016/j.oceaneng.2022.111888
|
[24] |
Hsiao CT, Pauley LL. Study of tip vortex cavitation inception using Navier-Stokes computation and bubble dynamics model. Journal of Fluids Engineering, 1999, 121(1): 198-204 doi: 10.1115/1.2822002
|
[25] |
Hsiao CT, Chahine GL, Liu H. Scaling effects on prediction of cavitation inception in a line vortex flow. Journal of Fluid Engineering, 2003, 125(1): 53-60 doi: 10.1115/1.1521956
|
[26] |
Hsiao CT, Jain A, Chahine GL. Effect of gas diffusion on bubble entrainment and dynamics around a propeller//26th Symposium on Naval Hydrodynamic. Washington DC, National Academy Press, 2006
|
[27] |
Hsiao CT, Chahine GL. Scaling of tip vortex cavitation inception for a marine open propeller//27th Symposium on Naval Hydrodynamic. Washington DC, National Academy Press, 2008
|
[28] |
熊鹰, 韩宝玉, 时立攀. 螺旋桨梢涡空泡初生及尺度效应研究. 船舶力学, 2013, 17(5): 451-459 (Xiong Ying, Han Baoyu, Shi Lipan. Study on prediction of tip-vortex cavitation inception. Journal of Ship Mechanics, 2013, 17(5): 451-459 (in Chinese)
Xiong Ying, Han Baoyu, Shi Lipan. Study on prediction of tip-vortex cavitation inception. Journal of Ship Mechanics, 2013, 17(05): 451-459 (in Chinese)
|
[29] |
Zhang AM, Li SM, Cui P, et al. A unified theory for bubble dynamics. Physics of Fluids, 2023, 35(3): 033323 doi: 10.1063/5.0145415
|
[30] |
Zhang AM, Li SM, Cui P, et al. Interactions between a central bubble and a surrounding bubble cluster. Theoretical and Applied Mechanics Letters, 2023, in press
|
[31] |
齐江辉, 郭健, 郑亚雄等. 七叶大侧斜螺旋桨空泡特性及梢涡演化数值模拟研究. 推进技术, 2020, 41(11): 2605-2612 (Qi Jianghui, Guo Jian, Zheng Yaxiong, et al. Numerical simulation of a seven-Blade propeller with skew on its cavitation characteristics and tip vortex evolution. Journal of Propulsion Technology, 2020, 41(11): 2605-2612 (in Chinese) doi: 10.13675/j.cnki.tjjs.200331
Qi Jianghui, Guo Jian, Zheng Yaxiong, et al. Numerical simulation of a seven-Blade propeller with skew on its cavitation Characteristics and tip vortex evolution. Journal of Propulsion Technology, 2020, 41(11): 2605-2612 (in Chinese) doi: 10.13675/j.cnki.tjjs.200331
|
[32] |
陈卓, 艾子涛, 王恋舟. 不同工况下螺旋桨尾流场数值分析. 船舶工程, 2022, 44(9): 89-94 (Chen Zhuo, Ai Zitao, Wang Lianzhou. Numerical analysis of propeller wake fields under different conditions. Ship Engineering, 2022, 44(9): 89-94 (in Chinese) doi: 10.13788/j.cnki.cbgc.2022.09.15
Chen Z, Ai ZT and Wang LZ. Numerical analysis of propeller wake fields under different conditions. Ship Engineering, 2022, 44(09): 89-94 (in Chinese)) doi: 10.13788/j.cnki.cbgc.2022.09.15
|
[33] |
宋汉奇, 张恺玲, 马鸣等. DES与DDES在湍流分离中的原理研究与性能分析. 北京航空航天大学学报, 2022, 出版中
Song Hanqi, Zhang Kailing, Ma Ming, et al. Theory research and performance analysis of DES and DDES in turbulent separation. Journal of Beijing University of Aeronautics and Astronautics, 2022, in press (in Chinese)
|
[34] |
Liu CB, Li J, Li Y, et al. Scale-resolving simulation and particle image velocimetry validation of the flow around a marine propeller. Journal of Zhejiang University-Science A, 2019, 20(8): 553-563 doi: 10.1631/jzus.A1900165
|
[35] |
Liu CB, Li J, Bu WY, et al. Application of scale-resolving simulation to a hydraulic coupling, a hydraulic retarder, and a hydraulic torque converter. Journal of Zhejiang University-Science A, 2018, 19(12): 904-925 doi: 10.1631/jzus.A1700508
|
[36] |
Menter FR. Stress-blended eddy simulation (SBES)—a new paradigm in hybrid RANS-LES modeling//Sixth HRLM Symposium. Strasbourg, France, 2016: 1-5
|
[37] |
Menter FR, Kuntz M, Langtry R. Ten years of industrial experience with the SST turbulence model. Turbulence, Heat and Mass Transfer, 2003, 4(1): 625-632
|
[38] |
Nicoud F, Ducros F. Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow, Turbulence and Combustion, 1999, 62(3): 183-200 doi: 10.1023/A:1009995426001
|
[39] |
Franc JP, Michel JM. Fundamentals of Cavitation. Springer Science & Business Media, 2006
|
[40] |
Zhang LX, Chen LY, Shao XM. The migration and growth of nuclei in an ideal vortex flow. Physics of Fluids, 2016, 28(12): 123305 doi: 10.1063/1.4972275
|
[41] |
Wang XC, Bai XR, Cheng HY, et al. Numerical investigation of how gap size influences tip leakage vortex cavitation inception using a Eulerian–Lagrangian method. Physics of Fluids, 2023, 35(1): 012113 doi: 10.1063/5.0131813
|
[42] |
Ghahramani E, Ström H, Bensow RE. Numerical simulation and analysis of multi-scale cavitating flows. Journal of Fluid Mechanics, 2021, 922: A22 doi: 10.1017/jfm.2021.424
|
[43] |
Oweis GF, Van der Hout IE, Iyer C, et al. Capture and inception of bubbles near line vortices. Physics of Fluids, 2005, 17(2): 022105 doi: 10.1063/1.1834916
|
[44] |
Tomita Y, Shima A. On the behavior of a sphere bubble and the impulse pressure in a viscous compressible liquid. Bulletin of JSME, 1997, 20(149): 1453-1460
|
[45] |
Peters A, el Moctar O. Numerical assessment of cavitation-induced erosion using a multi-scale Euler-Lagrange method. Journal of Fluid Mechanics, 2020, 894: A19 doi: 10.1017/jfm.2020.273
|
[46] |
Asnaghi A, Svennberg U, Bensow RE. Large eddy simulations of cavitating tip vortex flows. Ocean Engineering, 2020, 195: 106703 doi: 10.1016/j.oceaneng.2019.106703
|
[47] |
Heinke HJ, Kröger W. Potsdam propeller test case (PPTC)-measurement of the cavitation nuclei in the tunnel water and cavitation observations with the model propeller VP1304. Report 3890, Potsdam and Rostock, 2013
|
[48] |
Lin M, Li JC, Li L. Simulation of typhoon's anomalous track (I)—Rankine vortex model. Applied Mathematics and Mechanics, 1998, 19(3): 207-211 doi: 10.1007/BF02453384
|
[49] |
Ohl CD, Kurz TR, Geisler R, et al. Bubble dynamics, shock waves and sonoluminescence. Philosophical Transactions of the Royal Socienty A, 1999, 357: 269-294 doi: 10.1098/rsta.1999.0327
|
[50] |
张敏弟, 王国玉, 鲁君瑞. 绕水翼初生空化涡的实验观测. 力学学报, 2006, 38(4): 547-552 (Zhang Mindi, Wang Guoyu, Lu Junrui. Experimental observations of inception cavitation vortices around a hydrofoils. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(4): 547-552 (in Chinese) doi: 10.3321/j.issn:0459-1879.2006.04.015
Zhang Mindi, Wang Guoyu, Lu Junrui. Experimental observations of inception cavitation vortices around a hydrofoils. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(4): 547-552 (in Chinese) doi: 10.3321/j.issn:0459-1879.2006.04.015
|
[51] |
Ling SC, Gowing S, Shen YT. The role of microbubbles on cavitation inception on head form//Fourteenth Symposium on Naval Hydrodynamics, Ann Arbor, MI, 1982
|
[52] |
Gao Z, Wu WX, Wang B. The effects of nanoscale nuclei on cavitation. Journal of Fluid Mechanics, 2021, 911: A20 doi: 10.1017/jfm.2020.1049
|
[53] |
Jung HS, Young JM, Byeong RS. Prediction of cavitating flow noise by direct numerical simulation. Journal of Computational Physics, 2008, 227(13): 6511-6531 doi: 10.1016/j.jcp.2008.03.016
|
[54] |
Wang XC, Bai XR, Cheng HY, et al. LES investigation of cavitation harmonic tone around a Delft twist-11 hydrofoil. Ocean Engineering, 2022, 253: 111313 doi: 10.1016/j.oceaneng.2022.111313
|
[55] |
Blake WK. Mechanics of Flow-Induced Sound and Vibration, Volume 1: General Concepts and Elementary Sources. London: Academic Press, 2017: 35
|
[56] |
Urick R. Principles of Underwater Sound for Engineers. New York: McGraw-Hill Inc., 1975
|
[57] |
Jeong SJ, Hong SY, Seol HS. Establishment of cavitation inception speed judgment criteria by cavitation noise analysis for underwater vehicles. Journal of Engineering for the Maritime Environment, 2021, 235(2): 546-557
|
[1] | Hong Ming, Wu Qin, Li Yong, Huang Biao, Wang Guoyu. RESEARCH ON THE HYDRODYNAMIC AND STRUCTURAL RESPONSE CHARACTERISTICS OF COMPOSITE PROPELLERS BASED ON SIMILARITY CRITERIA[J]. Chinese Journal of Theoretical and Applied Mechanics, 2025, 57(5): 1-11. DOI: 10.6052/0459-1879-24-483 |
[2] | Wei Xizhong, Wang Yongshuai, Chen Yihong, Ji Bin. PREDICTION METHOD OF PROPELLER TIP VORTEX CAVITATION INCEPTION BASED ON TREND MUTATION TEST[J]. Chinese Journal of Theoretical and Applied Mechanics, 2025, 57(3): 605-615. DOI: 10.6052/0459-1879-24-448 |
[3] | Yang Lin, Zheng Xing. VORTEX IDENTIFICATION TECHNOLOGY AND ITS APPLICATION IN THE WAKE FIELD OF MARINE PROPELLER[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(11): 3032-3041. DOI: 10.6052/0459-1879-22-339 |
[4] | Li Peng, Wang Chao, Han Yang, Kuai Yunfei, Wang Shimin. THE STUDY ABOUT THE IMPACT OF THE FREE-SURFACE ON THE PERFORMANCE OF THE PROPELLER ATTACHED AT THE STERN OF A SUBMARINE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(9): 2501-2514. DOI: 10.6052/0459-1879-21-063 |
[5] | Wang Lianzhou, Wu Tiecheng, Guo Chunyu. STUDY ON INSTABILITY MECHANISM AND EVOLUTION MODEL OF PROPELLER TIP VORTICES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(8): 2267-2278. DOI: 10.6052/0459-1879-21-151 |
[6] | Lü Ming, Ning Zhi, Sun Chunhua. STUDY ON THE GROWTH AND COLLAPSE OF CAVITATION BUBBLE WITHIN A DROPLET[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4): 857-866. DOI: 10.6052/0459-1879-15-434 |
[7] | nfluence of exciting parameters on the vibration of single cavitation bubble driven by intensive sound[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(1): 8-14. DOI: 10.6052/0459-1879-2009-1-2007-461 |
[8] | Experimental observations of inception cavitation vortices around a hydrofoils[J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(4): 547-552. DOI: 10.6052/0459-1879-2006-4-2005-020 |
1. |
张阿漫 ,李世民 ,李帅 ,刘云龙 . 气泡动力学研究进展. 力学学报. 2025(01): 1-16 .
![]() | |
2. |
韦喜忠,王永帅,陈奕宏,季斌. 基于趋势突变检验的螺旋桨梢涡空化初生预报方法. 力学学报. 2025(03): 605-615 .
![]() |