Citation: | An Bo, Meng Xinyu, Yang Shuangjun, Sang Weimin. Research on the lattice Boltzmann algorithm for grid refinement based on non-uniform rectangular grid. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(10): 2288-2296. DOI: 10.6052/0459-1879-23-062 |
[1] |
Chen SY, Doolen G. Lattice Boltzmann method for fluid flows. Annual Review of Fluid Mechanics, 1998, 143(2): 426-448
|
[2] |
Benzi R, Succi S, Vergassola M, The lattice Boltzmann equation: theory and applications. Physics Reports, 1992, 222(3): 145-197
|
[3] |
何雅玲, 王勇, 李庆. 格子Boltzmann方法的理论及应用. 北京: 科学出版社, 2009: 145-197
He Yaling, Wang Yong, Li Qing. Lattice Boltzmann Method: Theory and Applications. Beijing: Science Press, 2009: 145-197 (in Chinese)
|
[4] |
Silva G, Semiao V. First- and second-order forcing expansions in a lattice Boltzmann method reproducing isothermal hydrodynamics in artificial compressibility form. Journal of Fluid Mechanics, 2012, 698: 282-303
|
[5] |
Yang LM, Shu C, Wu J. Development and comparative studies of three non-free parameter lattice Boltzmann models for simulation of compressible flows. Advances in Applied Mathematics and Mechanics, 2012, 4(4): 454-472
|
[6] |
Jin Y, Uth MF, Kuznetsov AV, et al. Numerical investigation of the possibility of macroscopic turbulence in porous media: a direct numerical simulation study. Journal of Fluid Mechanics, 2015, 766: 76-103
|
[7] |
Li XM, Leung RCK, So RMC. One-step aeroacoustics simulation using lattice Boltzmann method. AIAA Journal, 2006, 44(1): 78-79
|
[8] |
Zhang CY, Cheng P, Minkowycz WJ. Lattice Boltzmann simulation of forced condensation flow on a horizontal cold surface in the presence of a non-condensable gas. International Journal of Heat and Mass Transfer, 2017, 115: 500-512
|
[9] |
Chen S, Liu ZH, He Z, et al. A new numerical approach for fire simulation. International Journal of Modern Physics C, 2007, 118(2): 187-202
|
[10] |
Haddadi H, Morris JF. Microstructure and rheology of finite inertia neutrally buoyant suspensions. Journal of Fluid Mechanics, 2014, 749: 431-459
|
[11] |
An B, Bergadà JM, Mellibovsky F, et al. New Applications of numerical simulation based on lattice Boltzmann method at high Reynolds numbers. Computers & Mathematics with Applications, 2020, 79(6): 1718-1741
|
[12] |
安博, 桑为民. 基于不同网格结构的LBM研究. 力学学报, 2013, 45(5): 699-706 (An Bo, Sang Weimin. The numerical study of lattice Boltzmann method based on different grid structure. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(5): 699-706 (in Chinese)
An Bo, Sang Weimin. The numerical study of lattice Boltzmann method based on different grid structure. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(5): 699-706(in Chinese))
|
[13] |
Mei RW, Shyy W. On the finite difference-based lattice Boltzmann method in curvilinear coordinates. Journal of Computational Physics, 1998, 143(2): 426-448
|
[14] |
Guo ZL, Zhao TS. Explicit finite-difference lattice Boltzmann method for curvilinear coordinates. Physical Review E, 2003, 67(6): 066709
|
[15] |
He XY, Doolen G. Lattice Boltzmann method on curvilinear coordinates system: Flow around a circular cylinder. Journal of Computational Physics, 1997, 134(2): 306-315
|
[16] |
Marvriplis DJ. Multigrid solution of the steady state lattice Boltzmann equation. Computers & Fluids, 2006, 35: 793-804
|
[17] |
Patil DV, Premnath KN, Banerjee S. Multigrid lattice Boltzmann method for accelerated solution of elliptic equations. Journal of Computational Physics, 2014, 265: 172-194
|
[18] |
王兴勇, 索丽生, 程永光等. 双重网格lattice Boltzmann方法. 海河大学学报, 2003, 31(1): 5-10 (Wang Xingyong, Suo Lisheng, Cheng Yongguang, et al. Lattice Boltzmann method with double meshes. Journal of Hohai University, 2003, 31(1): 5-10 (in Chinese)
Wang Xingyong, Suo Lisheng, Cheng Yongguang, et al. . Lattice Boltzmann method with double meshes. Journal of Hohai University, 2003, 31(1): 5-10(in Chinese))
|
[19] |
Zhang Y, Xie JH, Li XY, et al. A multi-block adaptive solving technique based on lattice Boltzmann method. Modern Physics Letters B, 2018, 32(12-13): 1840052
|
[20] |
Lagrava D, Malaspinas O, Latt J, et al. Advances in multi-domain lattice Boltzmann grid refinement. Journal of Computational Physics, 2012, 231: 4808-4822
|
[21] |
Lin CL, Lai TG. Lattice Boltzmann method on composite grids. Physical Review E, 2000, 62(2): 2219-2225
|
[22] |
Eitel-Amor G, Meinke M, Schrö der W. A lattice-Boltzmann method with hierarchically refined meshes. Computers & Fluids, 2013, 75: 127-139
|
[23] |
Lu ZY, Liao Y, Qian DY, et al. Large eddy simulations of a stirred tank using the lattice Boltzmann method on a nonuniform grid. Journal of Computational Physics, 2002, 181: 675-704
|
[24] |
Liu B, Khalili A. Acceleration of steady-state lattice Boltzmann simulations for exterior flows. Computers & Fluids, 2013, 75: 127-139
|
[25] |
Valero-Lara P, Jansson J. A non-uniform staggered Cartesian grid approach for lattice-Boltzmann method. Procedia Computer Science, 2015, 51: 296-305
|
[26] |
Zhou JG. A lattice Boltzmann method for solute transport. International Journal for Numerical Methods in Fluids, 2009, 61: 848-863
|
[27] |
Zhou JG. A rectangular lattice Boltzmann method for groundwater flows. Procedia Computer Science, 2007, 21(9): 531-542
|
[28] |
Qian YH, d’Humieres D, Lallemand P. Lattice BGK models for Navier-Stokes equation. Europhysics Letters, 1992, 17(6): 478-484
|
[29] |
An B, Bergadà JM, Mellibovsky F. The lid driven right-angled isosceles triangular cavity flow. Journal of Fluid Mechanics, 2019, 875: 476-519
|
[30] |
An B, Mellibovsky F, Bergadà JM, et al. Towards a better understanding of wall-driven square cavity flows using lattice Boltzmann method. Applied Mathematical Modelling, 2020, 82: 469-486
|
[31] |
安博, 孟欣雨, 桑为民. 镜像对称顶盖驱动方腔内流过渡流临界特性研究. 力学学报, 2022, 54(9): 2409-2418 (An Bo, Meng Xinyu, Sang Weimin. On the transitional characteristics of mirror symmetry lid-driven cavity flow. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(9): 2409-2418 (in Chinese)
An Bo, Meng Xinyu, Sang Weimin. On the transitional characteristics of mirror symmetry lid-driven cavity flow. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(9): 2409-2418(in Chinese))
|
[32] |
An B, Guo SP, Bergadà JM. Lid driven triangular and trapezoidal cavity flow:Vortical structures for steady solutions and Hopf bifurcations. Applied Sciences, 2023, 13(2): 888
|
[33] |
Guo ZL, Zheng CG, Shi BC. An extrapolation method for method boundary conditions in lattice Boltzmann method. Physics of Fluids, 2002, 14(6): 2007-2010
|
[34] |
Ghia U, Ghia KN, Shin CT. High-Resolutions for incompressible flow using the Navier-Stokes equations and a multigrid method. Journal of Computational Physics, 1982, 48(3): 387-411
|
[35] |
Erturk E, Gökçöl C. Fourth-order compact formulation of Navier-Stokes equations and driven cavity flow at high Reynolds numbers. International Journal for Numerical Methods in Fluids, 2005, 50(4): 421-436
|
[36] |
Hou S, Zhou Q, Chen S, et al. Simulation of cavity flow by the lattice Boltzmann method. Journal of Computational Physics, 1995, 118(2): 329-347
|
[37] |
Vanka S. Block implicit multigrid solution of Navier-Stokes equations in primitive variables. Journal of Computational Physics, 1986, 65(1): 138-158 doi: 10.1016/0021-9991(86)90008-2
|
[38] |
Das MK, Rajesh Kanna P. Application of an ADI scheme for steady and periodic solutions in a lid-driven cavity problem. Journal of Numerical Methods for Heat & Fluid Flow, 2007, 17(8): 799-822
|
[39] |
Shi X, Huang XW, Zheng Y, et al. A hybrid algorithm of lattice Boltzmann method and finite difference-based lattice Boltzmann method for viscous flows. International Journal for Numerical Methods in Fluids, 2017, 85(11): 641-661
|
[1] | Zou Lin, Zuo Hongcheng, Liu Diwei, Wang Jiahui, Xu Jinli. ACTIVE FLOW CONTROL OF WAVY CYLINDER BASED ON STEADY BLOWING AND SUCTION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(11): 2970-2983. DOI: 10.6052/0459-1879-22-212 |
[2] | Yang Pengyu, Zhang Xin, Lai Qingren, Che Binghui, Chen Lei. EXPERIMENTAL INVESTIGATION OF THE INFLUENCE OF SCALING EFFECTS OF WINGS ON THE FLOW SEPARATION CONTROL USING PLASMA ACTUATORS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(12): 3321-3330. DOI: 10.6052/0459-1879-21-379 |
[3] | Zhang Wenwen, Xu Rongwu, He Lin, Pan Longde, Zhao Jiaxi. EXPERIMENTAL INVESTIGATION INTO THE CONTROL OF FLOW-INDUCED OSCILLATIONS OF UNDERWATER APERTURE-CAVITIES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(10): 2762-2775. DOI: 10.6052/0459-1879-21-143 |
[4] | Luo Kai, Wang Qiu, Li Yixiang, Li Jinping, Zhao Wei. RESEARCH PROGRESS ON MAGNETOHYDRODYNAMIC FLOW CONTROL UNDER TEST CONDITIONS WITH HIGH TEMPERATURE REAL GAS EFFECT[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(6): 1515-1531. DOI: 10.6052/0459-1879-21-067 |
[5] | Huang Guangjing, Dai Yuting, Yang Chao. PLASMA-BASED FLOW CONTROL ON PITCHING AIRFOIL AT LOW REYNOLDS NUMBER[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(1): 136-155. DOI: 10.6052/0459-1879-20-183 |
[6] | Zhang Weiguo, Shi Zheyu, Li Guoqiang, Yang Yongdong, Huang Minqi, Bai Yunmao. NUMERICAL STUDY ON DYNAMIC STALL FLOW CONTROL FOR WIND TURBINE AIRFOIL USING PLASMA ACTUATOR[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1678-1689. DOI: 10.6052/0459-1879-20-090 |
[7] | Wang Wei, Zhang Qingdian, Tang Tao, An Zhaoyang, Tong Tianhao, Wang Xiaofang. MECHANISM INVESTIGATION OF WATER INJECTION ON SUPPRESSING HYDROFOIL CLOUD CAVITATION FLOW[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 12-23. DOI: 10.6052/0459-1879-19-282 |
[8] | Yiwen Li, Yutian Wang, Lei Pang, Lianghua Xiao, Zhiwen Ding, Pengzhen Duan. RESEARCH PROGRESS OF PLASMA/MHD FLOW CONTROL IN INLET[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 311-321. DOI: 10.6052/0459-1879-18-290 |
[9] | Yan Hong, Lin Ke. CONTROL MECHANISM OF THERMAL ACTUATOR IN SUPERSONIC ROUND JET[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(4): 557-570. DOI: 10.6052/0459-1879-14-379 |
[10] | Chen Yaohui, Li Baoming, Pan Xuchao, Liu Yixin. RESEARCH OF THE CONTROL EFFICIENCY OF LIFT INCREASE AND DRAG REDUCTION BASE ON FLOW AROUND HYDROFOIL CONTROLLED BY LORENTZ FORCE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(3): 414-421. DOI: 10.6052/0459-1879-14-346 |
1. |
解浩,孟国亮,林小军,李宝栋. 前缘狭缝对NACA0015水翼非定常空化的影响. 机床与液压. 2025(04): 166-170 .
![]() | |
2. |
赵伟国,亢艳东,李清华,薛子阳. 叶片吸力面不同结构对离心泵空化初生的影响. 振动与冲击. 2022(07): 23-30 .
![]() | |
3. |
李智健,王巍,唐滔,安昭阳,纪祥,刘明雨. 主动射流抑制云空化及流致噪声的研究. 中国造船. 2022(04): 124-132 .
![]() | |
4. |
孙龙泉,颜皓,马贵辉,赵纪鹏. 环形槽对通气空泡融合的促进作用分析. 力学学报. 2021(02): 386-394 .
![]() | |
5. |
陈国孝,刘喆,邵传平. 旋转振荡板尾流的控制研究. 力学学报. 2021(07): 1856-1875 .
![]() | |
6. |
王恋舟,吴铁成,郭春雨. 螺旋桨梢涡不稳定性机理与演化模型研究. 力学学报. 2021(08): 2267-2278 .
![]() | |
7. |
张珍,叶舒然,岳杰顺,王一伟,黄晨光. 基于组合神经网络的雷诺平均湍流模型多次修正方法. 力学学报. 2021(06): 1532-1542 .
![]() | |
8. |
谢庆墨,陈亮,张桂勇,孙铁志. 基于动力学模态分解法的绕水翼非定常空化流场演化分析. 力学学报. 2020(04): 1045-1054 .
![]() | |
9. |
胡建军,朱晴,王美达,金瑶兰,王思民,孔祥东. 近距离下射流冲击平板PIV实验研究. 力学学报. 2020(05): 1350-1361 .
![]() |