EI、Scopus 收录
中文核心期刊
Li Lijun, Zeng Xiaohui, Cui Zhehua, Wu Han. Propagation of elastic wave in infinite cable with small sag considering damping. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(5): 1138-1150. DOI: 10.6052/0459-1879-22-606
Citation: Li Lijun, Zeng Xiaohui, Cui Zhehua, Wu Han. Propagation of elastic wave in infinite cable with small sag considering damping. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(5): 1138-1150. DOI: 10.6052/0459-1879-22-606

PROPAGATION OF ELASTIC WAVE IN INFINITE CABLE WITH SMALL SAG CONSIDERING DAMPING

  • Received Date: December 29, 2022
  • Accepted Date: April 05, 2023
  • Available Online: April 06, 2023
  • Cable structures are widely used in electrical, civil, marine and aviation engineering. As cable in engineering longer and longer, the high-order vibration becomes more and more obvious. Accordingly, the disturbance propagation should be considered in the study. In the existing research on the propagation of elastic waves in cables, the damping is usually not considered. However, damping has an important influence on the propagation of waves. We developed the motion equation of three-dimensional elastic cable by considering damping into equation. The free propagation characteristics of in-plane and out-of-plane waves are discussed respectively by solving the equations of motion above, including frequency relation, phase velocity, group velocity. And then, the wave propagation law of the cable is further discussed by calculating the displacement response under the initial cosine pulse. Besides, we study the wave dispersion and the influence of damping on the propagation of elastic waves in cables. The results show that both in-plane and out-plane waves are dispersive while damping is considered. In addition, the in-plane waves are highly dispersive with the curvature considered. In addition, the crest of wave dissipates in wave propagation, and the response of trailing edge is higher than the leading edge while damping is considered.
  • [1]
    Wu Q, Takahashi K, Nakamura S. Non-linear vibrations of cables considering loosening. Journal of Sound and Vibration, 2003, 261(3): 385-402 doi: 10.1016/S0022-460X(02)01090-8
    [2]
    Koh CG, Rong Y. Dynamic analysis of large displacement cable motion with experimental verification. Journal of Sound and Vibration, 2004, 272(1-2): 187-206 doi: 10.1016/S0022-460X(03)00326-2
    [3]
    Srinil N, Rega G, Chucheepsakul S. Three-dimensional non-linear coupling and dynamic tension in the large-amplitude free vibrations of arbitrarily sagged cables. Journal of Sound and Vibration, 2004, 269(3-5): 823-852 doi: 10.1016/S0022-460X(03)00137-8
    [4]
    Karoumi R. Some modeling aspects in the nonlinear finite element analysis of cable supported bridges. Computers & Structures, 1999, 71(4): 397-412
    [5]
    Ni YQ, Ko JM, Zheng G. Dynamic analysis of large-diameter sagged cables taking into account flexural rigidity. Journal of Sound and Vibration, 2002, 257(2): 301-319 doi: 10.1006/jsvi.2002.5060
    [6]
    Irvine HM, Caughey TK. The linear theory of free vibrations of a suspended cable. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 1974, 341(1626): 299-315 doi: 10.1098/rspa.1974.0189
    [7]
    Rega G, Vestroni F, Benedettini F. Parametric analysis of large amplitude free vibrations of a suspended cable. International Journal of Solids and Structures, 1984, 20(2): 95-105 doi: 10.1016/0020-7683(84)90001-5
    [8]
    刘洪德, 张素侠. 基于应变修正的二维缆索动力学建模改进. 中国科学: 物理学 力学 天文学, 2022, 52(12): 86-95 (Liu Hongde, Zhang Suxia. Improvement of two-dimensional dynamic modeling of cable based on strain modification. Scientia Since:Physica,Mechanica &Astronomica, 2022, 52(12): 86-95 (in Chinese)
    [9]
    Chen L, Basu B, Nielsen SRK. A coupled finite difference mooring dynamics model for floating offshore wind turbine analysis. Ocean Engineering, 2018, 162: 304-315
    [10]
    Irvine HM. Cable Structures. Cambridge: The MIT Press, 1981
    [11]
    Rega G. Nonlinear vibrations of suspended cables—Part I: Modeling and analysis. Appl. Mech. Rev., 2004, 57(6): 443-478 doi: 10.1115/1.1777224
    [12]
    Rega G. Nonlinear vibrations of suspended cables—Part II: deterministic phenomena. Appl. Mech. Rev., 2004, 57(6): 479-514 doi: 10.1115/1.1777225
    [13]
    Ibrahim RA. Nonlinear vibrations of suspended cables—Part III: random excitation and interaction with fluid flow. Appl. Mech. Rev., 2004, 57(6): 515-549 doi: 10.1115/1.1804541
    [14]
    Jafari M, Hou F, Abdelkefi A. Wind-induced vibration of structural cables. Nonlinear Dynamics, 2020, 100(1): 351-421 doi: 10.1007/s11071-020-05541-6
    [15]
    Houjun K, Tieding G, Yueyu Z. Review on nonlinear vibration and modeling of large span cable-stayed bridge. Acta Mechanica Sinica, 2016, 48(3): 519-535 doi: 10.6052/0459-1879-15-436
    [16]
    刘志文, 沈静思, 陈政清等. 斜拉索涡激振动气动控制措施试验研究. 振动工程学报, 2021, 34(3): 441-451 (Liu Zhiwen, Shen Jingsi, Chen Zhengqing, et al. Experimental study on aerodynamic control measures for vortex-induced vibration of stay-cable. Journal of Vibration Engineering, 2021, 34(3): 441-451 (in Chinese) doi: 10.16385/j.cnki.issn.1004-4523.2021.03.001
    [17]
    Di F, Sun L, Chen L. Suppression of vortex-induced high-mode vibrations of a cable-damper system by an additional damper. Engineering Structures, 2021, 242: 112495 doi: 10.1016/j.engstruct.2021.112495
    [18]
    Baxy A, Prasad R, Banerjee A. Elastic waves in layered periodic curved beams. Journal of Sound and Vibration, 2021, 512: 116387 doi: 10.1016/j.jsv.2021.116387
    [19]
    Banerjee A. Non-dimensional analysis of the elastic beam having periodic linear spring mass resonators. Meccanica, 2020, 55(5): 1181-1191 doi: 10.1007/s11012-020-01151-z
    [20]
    Syam BK, Sarkar A. Wave analysis for in-plane vibration of angular and curved frames. Journal of Vibration and Acoustics, 2021, 143(6): 061001 doi: 10.1115/1.4049627
    [21]
    Prasad R, Banerjee A. Flexural waves in elastically coupled telescopic metabeams. Journal of Vibration and Acoustics, 2021, 143(6): 061009 doi: 10.1115/1.4050809
    [22]
    Perkins NC, Mote Jr CD. Three-dimensional vibration of travelling elastic cables. Journal of Sound and Vibration, 1987, 114(2): 325-340 doi: 10.1016/S0022-460X(87)80157-8
    [23]
    Cheng SP, Perkins NC. Free vibration of a sagged cable supporting a discrete mass. The Journal of the Acoustical Society of America, 1992, 91(5): 2654-2662 doi: 10.1121/1.402973
    [24]
    Behbahani-Nejad M, Perkins NC. Freely propagating waves in elastic cables. Journal of Sound and Vibration, 1996, 196(2): 189-202 doi: 10.1006/jsvi.1996.0476
    [25]
    Behbahani-Nejad M, Perkins NC. Harmonically forced wave propagation in elastic cables with small curvature. Journal of Vibration & Acoustics, 1997, 119(3): 390-397
    [26]
    吴丞昊, 杨建民, 田新亮等. 深海布放缆不同材料属性下应力波自由传播频率特性影响研究. 海洋工程, 2017, 35(5): 12-22 (Wu Chenghao, Yang Jianming, Tian Xinliang, et al. Study of characteristics of stress waves propagating freely in deep-sea deployment cables with different cable properties. The Ocean Engineering, 2017, 35(5): 12-22 (in Chinese) doi: 10.16483/j.issn.1005-9865.2017.05.002
    [27]
    Graff KF. Wave Motion in Elastic Solids. Courier Corporation, 2012
    [28]
    张俊杰. 基于波传播法的周期复合板振动带隙衰减特性研究. 物理学报, 2014, 63(22): 213-220 (Zhang Junjie. Band gap attenuation characteristics of periodic compound plate with wave propagation approach. Acta Physica Sinica, 2014, 63(22): 213-220 (in Chinese) doi: 10.7498/aps.63.224302
    [29]
    Zhang X, Xu H, Cao M, et al. In-plane free vibrations of small-sag inclined cables considering bending stiffness with applications to cable tension identification. Journal of Sound and Vibration, 2023, 544: 117394 doi: 10.1016/j.jsv.2022.117394
    [30]
    Tabatabai H, Mehrabi AB, Morgan BJ, et al. Nondestructive bridge evaluation technology: bridge stay cable condition assessment. Report to the Federal Highway Administration. Construction Technology Laboratories, Inc, Skokie, IL, 1997
    [31]
    He WY, Meng FC, Ren WX. Cable force estimation of cables with small sag considering inclination angle effect. Advances in Bridge Engineering, 2021, 2(1): 1-22 doi: 10.1186/s43251-020-00022-7
    [32]
    Argentini T, Rosa L, Zasso A. Experimental evaluation of Hovenring bridge stay-cable vibration. WIT Transactions on Modelling and Simulation, 2013, 55: 427-437
    [33]
    Denoël V, Andrianne T. Real-scale observations of vortex induced vibrations of stay-cables in the boundary layer. Procedia Engineering, 2017, 199(09): 3109-3114
  • Related Articles

    [1]Wang Rong, Liu Haojun, Liu Jianing, Wu Ying. STIFFNESS AND DAMPING FEATURES OF BRAIN COMPLEX NETWORKS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(10): 3002-3011. DOI: 10.6052/0459-1879-24-176
    [2]Li Haiqin, Kong Xianren, Liu Yuan. EFFECT OF CONTACT NONLINEARITY ON ACOUSTIC BLACK HOLE BEAM FOR VIBRATION DAMPING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1189-1201. DOI: 10.6052/0459-1879-18-392
    [3]Xu Xin, Li Shirong. ANALYSIS OF THERMOELASTIC DAMPING FOR FUNCTIONALLY GRADED MATERIAL MICRO-BEAM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(2): 308-316. DOI: 10.6052/0459-1879-16-369
    [4]Jia Chenxia. Spatial composition and formation process of wave dissipative structure[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(4): 645-651. DOI: 10.6052/0459-1879-2010-4-lxxb2009-216
    [5]Wei Yang, Shuhong Liu, Yulin Wu. Liquid sloshing damping computation in cylindrical container based on vof method[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(6): 936-940. DOI: 10.6052/0459-1879-2009-6-2008-218
    [6]Zongmin Hu, Zonglin Jiang. Wave dynamic processes in cellular detonation reflection from wedges[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(1): 33-41. DOI: 10.6052/0459-1879-2007-1-2005-431
    [7]Zhenhua Huang, M.S. Ghidaoui. A model for the scattering of long waves by slotted breakwaters in the presence of currents[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(1): 1-9. DOI: 10.6052/0459-1879-2007-1-2006-240
    [8]Xiaozhou Ma, Guohai Dong, Bin Teng. A wave model based on the boussinesq equations[J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(6): 760-766. DOI: 10.6052/0459-1879-2006-6-2005-144
    [9]A TIME DOMAIN BOUNDARY ELEMENT METHOD FOR SYSTEMS WITH DAMPING[J]. Chinese Journal of Theoretical and Applied Mechanics, 1997, 29(5): 627-630. DOI: 10.6052/0459-1879-1997-5-1995-276
    [10]Zhaolin Wang. ON THE STABILITY OF DISSIPATIVE MECHANICAL SYSTEMS WITH CONSTRAINT DAMPING[J]. Chinese Journal of Theoretical and Applied Mechanics, 1997, 29(4): 501-505. DOI: 10.6052/0459-1879-1997-4-1995-259

Catalog

    Article Metrics

    Article views (615) PDF downloads (82) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return