EI、Scopus 收录
中文核心期刊
Zhang Hualin, Yang Dong, Shi Zhijun, Cai Shouyu. Topology optimization of thin shell structures based on adaptive bubble method. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(5): 1165-1173. DOI: 10.6052/0459-1879-22-562
Citation: Zhang Hualin, Yang Dong, Shi Zhijun, Cai Shouyu. Topology optimization of thin shell structures based on adaptive bubble method. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(5): 1165-1173. DOI: 10.6052/0459-1879-22-562

TOPOLOGY OPTIMIZATION OF THIN SHELL STRUCTURES BASED ON ADAPTIVE BUBBLE METHOD

  • Received Date: November 27, 2022
  • Accepted Date: April 02, 2023
  • Available Online: April 03, 2023
  • Combined with the isogeometric shell analysis (IGA) method, a new optimization design framework based on the adaptive bubble method (ABM) is proposed in this work, in order to effectively solve the topology optimization design problem of thin shell structures, and meet the high standards for the accuracy of analysis models as well as the quality of optimization results. The IGA technique has its natural advantages in thin shell analysis: on one hand, precise analysis models for thin shell structures are established with IGA, and model transformation operations and the resulting errors could therefore be avoided; on the other hand, the high-order continuity of physical fields to be solved can be guaranteed without setting the rotational degrees of freedom. Thanks to the mapping relationship related to the NURBS surface (i.e., the middle surface of thin shell), the structural topology evolution of a given shell surface can be achieved easily in the 2D regular parametric domain. In view of this, the ABM is adopted to carry out topology optimization in the parametric domain, and it contains three modules: the modeling of holes with closed B-splines (CBS), the insertion of holes via the topological derivative theory, and the fixed-grid analysis based on the finite cell method (FCM). It should be noted that holes are expressed in both parametric and implicit forms with CBS. The parametric form makes it convenient to import the structural model into the CAD system exactly. The implicit form not only facilitates the merging and separating operations of holes, but also can be well combined with the FCM which is far more convenient than trimming surface analysis (TSA). Theoretical analysis and numerical examples indicate that the proposed design framework could convert the complicated thin shell structural topology optimization problem into the simple one in the 2D domain, and optimized results with clear and smooth boundaries can be obtained with relatively few design variables.
  • [1]
    张卫红, 周涵, 李韶英等. 航天高性能薄壁构件的材料−结构一体化设计. 航空学报, 2022, 出版中

    Zhang Weihong, Zhou Han, Li Shaoying, et al. Material-structure integrated design for high-performance aerospace thin-walled component. Acta Aeronautica et Astronautica Sinica, 2022, in press (in Chinese))
    [2]
    杨利鑫, 何东泽, 陈强等. 高温环境下大尺度薄壁结构的电性能优化设计. 宇航学报, 2021, 42(9): 1099-1107 (Yang Lixin, He Dongze, Chen Qiang, et al. Electrical performance optimization design of large-scale thin-wall structures in thermal environment. Journal of Astronautics, 2021, 42(9): 1099-1107 (in Chinese)
    [3]
    王博, 周子童, 周演等. 薄壁结构多层级并发加筋拓扑优化研究. 计算力学学报, 2021, 38(4): 487-497 (Wang Bo, Zhou Zitong, Zhou Yan, et al. Concurrent topology optimization hierarchical stiffened thin-walled structures. Chinese Journal of Computational Mechanics, 2021, 38(4): 487-497 (in Chinese)
    [4]
    Träff EA, Sigmund O, Aage N. Topology optimization of ultra high resolution shell structures. Thin-Walled Structures, 2021, 160: 107349 doi: 10.1016/j.tws.2020.107349
    [5]
    Jiang BS, Zhang JY, Ohsaki M. Shape optimization of free-form shell structures combining static and dynamic behaviors. Structures, 2021, 29: 1791-1807 doi: 10.1016/j.istruc.2020.12.045
    [6]
    Bendsøe MP, Kikuchi N. Generating optimal topologies in structural design using a homogenization method. Computer Methods in Applied Mechanics and Engineering, 1988, 71(2): 197-224 doi: 10.1016/0045-7825(88)90086-2
    [7]
    Bendsøe MP, Sigmund O. Topology Optimization: Theory, Methods and Applications. Berlin: Springer Verlag, 2003: 9-24
    [8]
    Xie YM, Steven GP. A simple evolutionary procedure for structural optimization. Computers and Structures, 1993, 49(5): 885-896 doi: 10.1016/0045-7949(93)90035-C
    [9]
    隋允康, 叶红玲. 连续体结构拓扑优化的 ICM 方法. 北京: 科学出版社, 2013

    Sui Yunkang, Ye Hongling. ICM Method for Topology Optimization of Continuum Structures. Beijing: Science Press, 2013 (in Chinese))
    [10]
    Wang MY, Wang XM, Guo DM. A level set method for structural topology optimization. Computer Methods in Applied Mechanics and Engineering, 2003, 192(1-2): 227-246 doi: 10.1016/S0045-7825(02)00559-5
    [11]
    Maute K, Ramm E. Adaptive topology optimization of shell structures. American Institute of Aeronautics and Astronautics, 1997, 35: 1767-1773 doi: 10.2514/2.25
    [12]
    Ansola R, Canales J, Tarrago JA, et al. On simultaneous shape and material layout optimization of shell structures. Structural and Multidisciplinary Optimization, 2002, 24(3): 175-184 doi: 10.1007/s00158-002-0227-x
    [13]
    粟华, 陈伟俊, 龚春林等. 环向肋增稳的薄壁圆筒结构定向拓扑优化方法. 宇航学报, 2022, 43(3): 374-382 (Su Hua, Chen Weijun, Gong Chunlin, et al. Oriented topology optimization of thin-walled structure with circumferential rib enhancement of stability. Journal of Astronautics, 2022, 43(3): 374-382 (in Chinese)
    [14]
    Hassani B, Tavakkoli SM, Ghasemnejad H. Simultaneous shape and topology optimization of shell structures. Structural and Multidisciplinary Optimization, 2013, 48: 221-233
    [15]
    牟佳信, 邢彬, 郭梅等. 考虑热、弹、流耦合的航空发动机齿轮箱壳体拓扑优化分析. 机械传动, 2022, 46(2): 127-134 (Mu Jiaxin, Xing Bin, Guo Mei, et al. Topology optimization analysis of aero-engine gearbox housing considering the coupling of thermal elastohydrodynamic lubrication. Journal of Mechanical Transmission, 2022, 46(2): 127-134 (in Chinese)
    [16]
    朱润, 隋允康. 基于ICM方法的多工况位移约束下板壳结构拓扑优化设计. 固体力学学报, 2012, 33(1): 81-90 (Zhu Run, Sui Yunkang. Topological optimization design of plate-shell structure under multi-condition displacement constraints based on ICM method. Chinese Journal of Solid Mechanics, 2012, 33(1): 81-90 (in Chinese)
    [17]
    Huo WD, Liu C, Du ZL, et al. Topology optimization on complex surfaces based on the moving morphable component method and computational conformal mapping. Journal of Applied Mechanics, 2022, 89(5): 051008 doi: 10.1115/1.4053727
    [18]
    Xu XQ, Gu XD, Chen SK. Shape and topology optimization of conformal thermal control structures on free-form surfaces: A dimension reduction level set method (DR-LSM). Computer Methods in Applied Mechanics and Engineering, 2022, 398: 115183
    [19]
    Ho-Nguyen-Tan T, Kim HG. An efficient method for shape and topology optimization of shell structures. Structural and Multidisciplinary Optimization, 2022, 65: 119 doi: 10.1007/s00158-022-03213-0
    [20]
    Ho-Nguyen-Tan T, Kim HG. Level set-based topology optimization for compliance and stress minimization of shell structures using trimmed quadrilateral shell meshes. Computers and Structures, 2022, 259: 106695 doi: 10.1016/j.compstruc.2021.106695
    [21]
    Meng XC, Xiong YL, Xie YM, et al. Shape-thickness-topology coupled optimization of free-form shells. Automation in Construction, 2022, 142: 104476 doi: 10.1016/j.autcon.2022.104476
    [22]
    Jiang XD, Zhang WS, Liu C, et al. An explicit approach for simultaneous shape and topology optimization of shell structures. Applied Mathematical Modelling, 2023, 113: 613-639 doi: 10.1016/j.apm.2022.09.028
    [23]
    Hughes TJR, Cottrell JA, Bazilevs Y. Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering, 2005, 194(39-41): 4135-4195 doi: 10.1016/j.cma.2004.10.008
    [24]
    Seo YD, Kim HJ, Youn SK. Isogeometric topology optimization using trimmed spline surfaces. Computer Methods in Applied Mechanics and Engineering, 2010, 199(49-52): 3270-3296 doi: 10.1016/j.cma.2010.06.033
    [25]
    Kang P, Youn SK. Isogeometric topology optimization of shell structures using trimmed NURBS surfaces. Finite Elements in Analysis and Design, 2016, 120: 18-40 doi: 10.1016/j.finel.2016.06.003
    [26]
    Zhang WS, Li DD, Kang P, et al. Explicit topology optimization using IGA-based moving morphable void (MMV) approach. Computer Methods in Applied Mechanics and Engineering, 2019, 360: 112685
    [27]
    Zhang WS, Jiang S, Liu C, et al. Stress-related topology optimization of shell structures using IGA/TSA-based moving morphable void (MMV) approach. Computer Methods in Applied Mechanics and Engineering, 2020, 366: 113036 doi: 10.1016/j.cma.2020.113036
    [28]
    蔡守宇, 张卫红, 高彤等. 基于固定网格和拓扑导数的结构拓扑优化自适应泡泡法. 力学学报, 2019, 51(4): 1235-1244 (Cai Shouyu, Zhang Weihong, Gao Tong, et al. Adaptive bubble method using fixed mesh and topological derivative for structural topology optimization. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1235-1244 (in Chinese)
    [29]
    Zhang WH, Zhao LY, Gao T, et al. Topology optimization with closed B-splines and Boolean operations. Computer Methods in Applied Mechanics and Engineering, 2017, 315: 652-670 doi: 10.1016/j.cma.2016.11.015
    [30]
    Parvizian J, Düster A, Rank E. Finite cell method. Computational Mechanics, 2007, 41(1): 121-133 doi: 10.1007/s00466-007-0173-y
    [31]
    Piegl L, Tiller W. The NURBS Book. 2nd Edition. New York: Springer Verleg, 1997: 117-139
    [32]
    Kiendl J, Bletzinger KU, Linhard J, et al. Isogeometric shell analysis with Kirchhoff-love elements. Computer Methods in Applied Mechanics and Engineering, 2009, 198(49-52): 3902-3914 doi: 10.1016/j.cma.2009.08.013
    [33]
    Cirak F, Ortiz M, Schröder P. Subdivision surfaces: a new paradigm for thin-shell finite-element analysis. International Journal for Numerical Methods in Engineering, 2000, 47(12): 2039-2072 doi: 10.1002/(SICI)1097-0207(20000430)47:12<2039::AID-NME872>3.0.CO;2-1
    [34]
    Nvotny AA, Sokolowski J. Topological Derivatives in Shape Optimization. Heidelberg: Springer-Verlag, 2013
    [35]
    Sokolowski J, Zochowski A. On the topological derivative in shape optimization. SIAM Journal on Control and Optimization, 1999, 37(4): 1251-1272 doi: 10.1137/S0363012997323230
    [36]
    Cai SY, Zhang WH, Zhu JH, et al. Stress constrained shape and topology optimization with fixed mesh: A B-spline finite cell method combined with level set function. Computer Methods in Applied Mechanics and Engineering, 2014, 278(15): 361-387
    [37]
    Svanberg K. The method of moving asymptotes—a new method for structural optimization. International Journal for Numerical Methods in Engineering, 1987, 24(2): 359-373 doi: 10.1002/nme.1620240207
  • Related Articles

    [1]Li Guohui, Wu Xiaoyu, Wang Xian. NUMERICAL SIMULATION OF OLDROYD-B VISCOELASTIC DROPLETS IMPACTING A CURVED WALL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(5): 1342-1355. DOI: 10.6052/0459-1879-23-508
    [2]Jin Lingzhi, Wang Yu, Hao Peng, Zhang Yueyi, Wang Bo. ADAPTIVE ISOGEOMETRIC BUCKLING ANALYSIS OF STIFFENED PANELS DRIVEN BY STIFFENER PATHS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(5): 1151-1164. DOI: 10.6052/0459-1879-22-508
    [3]Yu Jiarui, Yue Baozeng, Li Xiaoyu. STUDY ON ISOGEOMETRIC ANALYSIS FOR LARGE-AMPLITUDE PROPELLANT SLOSHING AND SPACECRAFT COUPLED DYNAMICS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(2): 476-486. DOI: 10.6052/0459-1879-22-539
    [4]Guan Xinyan, Fu Qingfei, Liu Hu, Yang Lijun. NUMERICAL SIMULATION OF OLDROYD-B VISCOELASTIC DROPLET COLLISION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(3): 644-652. DOI: 10.6052/0459-1879-22-020
    [5]Wang Yue, Cui Yaqi, Yu Zuqing, Lan Peng, Lu Nianli. DYNAMIC ANALYSIS OF VARIABLE MESH ISOGEOMETRIC THIN PLATE BASED ON T-SPLINE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(8): 2323-2335. DOI: 10.6052/0459-1879-21-199
    [6]Wang Mingming, Luo Jianjun, Yu Min. AN OPTIMAL GRASP PLANNER FOR SPACE ROBOTS USING CLAMPED B-SPLIE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(2): 524-538. DOI: 10.6052/0459-1879-20-114
    [7]Ren Huilan, Chu Zhuxin, Li Jianqiao, Ma Tianbao. RESEARCH ON ELECTROMAGNETIC RADIATION DURING THE EXPLOSION PROGRESS OF COMPOSITION B EXPLOSIVES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 1199-1210. DOI: 10.6052/0459-1879-20-010
    [8]Chen Tao, Mo Rong, Wan Neng, Gong Zhongwei. IMPOSING DISPLACEMENT BOUNDARY CONDITIONS WITH NITSCHE'S METHOD IN ISOGEOMETRIC ANALYSIS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(2): 371-381. DOI: 10.6052/0459-1879-2012-2-20120221
    [9]Juan Chen, Chongjun Li, Wanji Chen. Area coordinates and b-net method for quadrilateral spline elements[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(1): 83-92. DOI: 10.6052/0459-1879-2010-1-2008-501
    [10]样条积分方程法分析弹塑性板弯曲[J]. Chinese Journal of Theoretical and Applied Mechanics, 1990, 22(2): 241-245. DOI: 10.6052/0459-1879-1990-2-1995-940
  • Cited by

    Periodical cited type(4)

    1. 苏茂林,邓宇,蔺冬. 黄河冰凌演变机理及防凌技术研究进展. 人民黄河. 2023(02): 62-67 .
    2. 王军,桑连升,宋飞虎,程铁杰. 冰盖前缘冰块稳定性研究进展. 水利学报. 2023(11): 1277-1286 .
    3. 刘昂,田璐,陈启刚,王忠祥,徐杰梁. 局部冰塞体尺寸对桥墩绕流和冲刷的影响. 公路交通科技. 2022(11): 84-94+150 .
    4. 王军,李志颀,程铁杰,隋觉义. 冰盖下桥墩局部冲刷随时间变化的试验研究. 水利学报. 2021(10): 1174-1182 .

    Other cited types(10)

Catalog

    Article Metrics

    Article views (818) PDF downloads (164) Cited by(14)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return