Citation: | Zhang Weipeng, Ren Jianxin, Guo Hang, Wang Zibin, Hu Jian. Impact of rudder geometry on the wake evolutions of propeller-rudder interaction. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(2): 318-329. DOI: 10.6052/0459-1879-22-552 |
[1] |
Filippone A, Afgan I. Orthogonal blade-vortex interaction on a helicopter tail rotor. AIAA Journal, 2008, 46(6): 1476-1489 doi: 10.2514/1.32690
|
[2] |
Shafii S, Obermaier H, Linn R, et al. Visualization and analysis of vortex-turbine interactions in wind farms. IEEE Transactions on Visualization and Computer Graphics, 2013, 19(9): 1579-1591 doi: 10.1109/TVCG.2013.18
|
[3] |
Roger M, Schram C, Moreau S. On the vortex-airfoil interaction noise including span-end effects, with application to open-rotor aeroacoustics. Journal of Sound and Vibration, 2014, 333: 283-306 doi: 10.1016/j.jsv.2013.09.012
|
[4] |
Jiang Y, Mao ML, Deng XG, et al. Numerical investigation on body-wake flow interaction over rod-airfoil configuration. Journal of Fluid Mechanics, 2015, 779: 1-35 doi: 10.1017/jfm.2015.419
|
[5] |
Kingan MJ, Parry AB. Time-domain analysis of contra-rotating propeller noise: wake interaction with a downstream propeller blade. Journal of Fluid Mechanics, 2020, 901: A21
|
[6] |
Posa A, Broglia R, Balars E. The wake flow downstream of a propeller-rudder system. International Journal of Heat and Fluid Flow, 2021, 87: 108765 doi: 10.1016/j.ijheatfluidflow.2020.108765
|
[7] |
Ghassemi H, Ghadimi P. Computational hydrodynamic analysis of the propeller-rudder and the AZIPOD systems. Ocean Engineering, 2009, 35: 117-130
|
[8] |
Hu J, Zhang WP, Guo H, et al. Numerical simulation of propeller wake vortex–rudder interaction in oblique flows. Ships and Offshore Structures, 2021, 16(2): 144-155 doi: 10.1080/17445302.2020.1711630
|
[9] |
Zhang XT, Hong Y, Yang F, et al. Effect of rudder on propulsion performance and structural deformation of composite propellers. Ocean Engineering, 2019, 182: 318-328 doi: 10.1016/j.oceaneng.2019.04.075
|
[10] |
Hou LX, Wang C, Chang X, et al. Hydrodynamic performance analysis of propeller-rudder system with the rudder parameters changing. Journal of Marine Science and Application, 2013, 12: 406-412
|
[11] |
Guo H, Zou ZJ. A RANS-based study of the impact of rudder on the propeller characteristics for a twin-screw ship during maneuvers. Ocean Engineering, 2021, 239: 109848 doi: 10.1016/j.oceaneng.2021.109848
|
[12] |
Molland AF, Turnock SR. Wind tunnel investigation of the influence of propeller loading on ship rudder performance. No. 46 Ship Research Report of University of Southampton, 1991
|
[13] |
Molland AF, Turnock SR. Marine Rudders and Control Surfaces: Principles, Data, Design and Application. Oxford: Butterworth-Heinemann, 2007
|
[14] |
Baode CE, Phillips AB, Turnock ST. Influence of drift angle on the computation of hull-propeller-rudder interaction. Ocean Engineering, 2015, 103: 64-77 doi: 10.1016/j.oceaneng.2015.04.059
|
[15] |
Felli M, Camussi R, Di Felice F. Mechanisms of evolution of the propeller wake in the transition and far fields. Journal of Fluid Mechanics, 2011, 682: 5-53 doi: 10.1017/jfm.2011.150
|
[16] |
Di Mascio, A, Muscari, R, Dubbioso, G. On the wake dynamics of a propeller operating in drift. Journal of Fluid Mechanics, 2014, 754: 263-307
|
[17] |
Wang LZ, Guo CY, Su YM, et al. Numerical analysis of a propeller during heave motion in cavitating flow. Applied Ocean Research, 2017, 66: 131-145 doi: 10.1016/j.apor.2017.05.001
|
[18] |
Wang LZ, Guo CY, Xu P, et al. Analysis of the performance of an oscillating propeller in cavitating flow. Ocean Engineering, 2018, 164: 23-39 doi: 10.1016/j.oceaneng.2018.06.036
|
[19] |
Hu J, Wang YZ, Zhang WP, et al. Tip vortex prediction for contra-rotating propeller using large eddy simulation. Ocean Engineering, 2019, 194: 106410 doi: 10.1016/j.oceaneng.2019.106410
|
[20] |
Wang LZ, Wu TC, Gong J, et al. Numerical simulation of the wake instabilities of a propeller. Physics of Fluids, 2021, 33(12): 125125 doi: 10.1063/5.0070596
|
[21] |
王恋舟, 吴铁成, 郭春雨. 螺旋桨梢涡不稳定性机理与演化模型研究. 力学学报, 2021, 53(8): 2267-2278 (Wang Lianzhou, Wu Tiecheng, Guo Chunyu. Study on instability mechanism and evolution model of propeller tip vortices. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(8): 2267-2278 (in Chinese) doi: 10.6052/0459-1879-21-151
|
[22] |
Gong J, Ding JM, Wang LZ. Propeller-duct interaction on the wake dynamics of a ducted propeller. Physics of Fluids, 2021, 33(7): 074102 doi: 10.1063/5.0056383
|
[23] |
Muscari R, Dubbioso G, Di Mascio A. Analysis of the flow field around a rudder in the wake of a simplified marine propeller. Journal of Fluid Mechanics, 2017, 814: 547-569 doi: 10.1017/jfm.2017.43
|
[24] |
Wang LZ, Guo CY, Xu P. Analysis of the wake dynamics of a propeller operating before a rudder. Ocean Engineering, 2019, 188: 106250 doi: 10.1016/j.oceaneng.2019.106250
|
[25] |
Hu J, Zhang WP, Sun SL, et al. Numerical simulation of vortex–rudder interactions behind the propeller. Ocean Engineering, 2019, 190: 106446 doi: 10.1016/j.oceaneng.2019.106446
|
[26] |
Zhang WP, Chen CG, Wang ZB, et al. Numerical simulation of structural response during propeller-rudder interaction. Engineering Applications of Computational Fluid Mechanics, 2021, 15(1): 584-612 doi: 10.1080/19942060.2021.1899989
|
[27] |
Zhang WP, Ning XS, Li FG, et al. Vibrations of simplified rudder induced by propeller wake. Physics of Fluids, 2021, 33(8): 083618 doi: 10.1063/5.0058968
|
[28] |
Li DQ. A non-linear method for the propeller-rudder interaction with the slipstream deformation taken into account. Computer Methods in Applied Mechanics and Engineering, 1996, 130: 115-132 doi: 10.1016/0045-7825(96)80458-0
|
[29] |
Felli M, Camussi R, Giulio G. Experimental analysis of the flow field around a propeller-rudder configuration. Experiments in Fluids, 2009, 46: 147-164 doi: 10.1007/s00348-008-0550-0
|
[30] |
Felli M, Felchi M. Propeller tip and hub vortex dynamics in the interaction with a rudder. Experiments in Fluids, 2011, 51: 1385-1402 doi: 10.1007/s00348-011-1162-7
|
[31] |
Felli M, Grizzi S, Falchi M. Hydrodynamic and hydroacoustic phenomena in the propeller wake-rudder interaction//Proceedings 33rd International Conference on Ocean, Offshore and Arctic Engineering, San Francisco, California, 2014
|
[32] |
Felli M. Underlying mechanisms of propeller wake interaction with a wing. Journal of Fluid Mechanics, 2021, 908: A10 doi: 10.1017/jfm.2020.792
|
[33] |
Posa A, Broglia R, Balars E. Flow over a hydrofoil in the wake of a propeller. Computers & Fluids, 2020, 213: 1-16
|
[34] |
Posa A, Broglia R, Balaras E. The wake structure of a propeller operating upstream of a hydrofoil. Journal of Fluid Mechanics, 2020, 904: A12 doi: 10.1017/jfm.2020.680
|
[35] |
Posa A, Broglia R. Flow over a hydrofoil at incidence immersed within the wake of a propeller. Physics of Fluids, 2021, 33(12): 125108 doi: 10.1063/5.0075231
|
[36] |
Durbin PA. Pettersson-Reif BA. Statistical Theory and Modeling for Turbulent Flow-Second Edition. Chichester: Wiley, 2011
|
[37] |
Rodriguez S. Applied Computational Fluid Dynamics and Turbulence Modeling: Practical Tools, Tips and Techniques. Cham: Springer Nature Switzerland AG, 2019
|
[38] |
Roache PJ. Quantification of uncertainty in computational fluid dynamics. Annual Review of Fluid Mechanics, 1997, 29: 123-160 doi: 10.1146/annurev.fluid.29.1.123
|
[1] | Yang Lin, Zheng Xing. VORTEX IDENTIFICATION TECHNOLOGY AND ITS APPLICATION IN THE WAKE FIELD OF MARINE PROPELLER[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(11): 3032-3041. DOI: 10.6052/0459-1879-22-339 |
[2] | Zou Lin, Zuo Hongcheng, Liu Diwei, Wang Jiahui, Xu Jinli. ACTIVE FLOW CONTROL OF WAVY CYLINDER BASED ON STEADY BLOWING AND SUCTION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(11): 2970-2983. DOI: 10.6052/0459-1879-22-212 |
[3] | Wang Lianzhou, Wu Tiecheng, Guo Chunyu. STUDY ON INSTABILITY MECHANISM AND EVOLUTION MODEL OF PROPELLER TIP VORTICES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(8): 2267-2278. DOI: 10.6052/0459-1879-21-151 |
[4] | Tong Fulin, Li Xin, Yu Changping, Li Xinliang. DIRECT NUMERICAL SIMULATION OF HYPERSONIC SHOCK WAVE AND TURBULENT BOUNDARY LAYER INTERACTIONS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 197-208. DOI: 10.6052/0459-1879-17-239 |
[5] | Zhang Yang, Xu Jinglei, Bai Junqiang, Hua Jun. A TRANSITION PREDICTION METHOD BASED ON TURBULENCE KINETIC EQUATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(1): 160-164. DOI: 10.6052/0459-1879-13-231 |
[6] | Xiaowei Chen, Shiquan Yang, Liling He. Modeling on mass abrasion of kinetic energy penetrator[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(5): 739-747. DOI: 10.6052/0459-1879-2009-5-2008-295 |
[7] | Xiaoqing Wu, Qun Nie, Qiang Fang. Measurement and analysis of turbulent mean kinetic energy dissipation rate in the atmospheric surface layer[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(6): 721-726. DOI: 10.6052/0459-1879-2007-6-2006-605 |
[8] | Weihong Zhang, Gaoming Dai, Fengwen Wang, Shiping Sun, Hicham Bassir. Topology optimization of material microstructures using strain energy-based prediction of effective elastic properties[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(1): 77-89. DOI: 10.6052/0459-1879-2007-1-2006-086 |
[9] | NUMERICAL STUDY ON THE MECHANISM FOR THREE-DIMENSIONAL EVOLUTION OF VORTEX AND THE STRUCTURAL FEATURES IN THE WAKE BEHIND A CIRCULAR CYLINDER[J]. Chinese Journal of Theoretical and Applied Mechanics, 1993, 25(3): 264-275. DOI: 10.6052/0459-1879-1993-3-1995-642 |
1. |
王永帅,王鑫程,程怀玉,季斌. 考虑气核生长溃灭效应的螺旋桨梢涡空化初生数值模拟研究. 力学学报. 2023(07): 1417-1427 .
![]() |