Citation: | Huang Ke, Zhang Jiaying, Wang Qingyun. Natural vibration analysis of two-dimensional flexible wing based on non-uniform beam model. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(2): 487-496. DOI: 10.6052/0459-1879-22-551 |
[1] |
Barbarino S, Bilgen O, Ajaj RM, et al. A review of morphing aircraft. Journal of Intelligent Material Systems and Structures, 2011, 22(9): 823-877
|
[2] |
Cistone J. Next century aerospace traffic management: the sky is no longer the limit. Journal of Aircraft, 2004, 41(1): 36-42 doi: 10.2514/1.1847
|
[3] |
Ajaj RM, Parancheerivilakkathil MS, Amoozgar M, et al. Recent developments in the aeroelasticity of morphing aircraft. Progress in Aerospace Sciences, 2020, 120: 100682
|
[4] |
孙杨, 昌敏, 白俊强. 变形机翼飞行器发展综述. 无人系统技术, 2021, 4(3): 65-77 (Sun Yang, Chang Min, Bai Junqiang. Review of morphing wing aircraft. Unmanned Systems Technology, 2021, 4(3): 65-77 (in Chinese) doi: 10.19942/j.issn.2096-5915.2021.3.029
|
[5] |
聂瑞. 变体机翼结构关键技术研究. [博士论文]. 江苏: 南京航空航天大学, 2018
Nie Rui. Research on key technologies of morphing wing structures. [PhD Thesis]. Jiangsu: Nanjing University of Aeronautics and Astronautics, 2018 (in Chinese)
|
[6] |
Wang C. Design and optimisation of morphing aircraft. [PhD Thesis]. Swansea: Swansea University, 2018
|
[7] |
王彬文, 杨宇, 钱战森等. 机翼变弯度技术研究进展. 航空学报, 2022, 43(1): 144-163 (Wang Binwen, Yang Yu, Qian Zhanshen, etal. Technical development of variable camber wing: review. Acta Aeronautica et Astronautica Sinica, 2022, 43(1): 144-163 (in Chinese)
|
[8] |
Woods BKS, Bilgen O, Friswell MI. Wind tunnel testing of the fish bone active camber morphing concept. Journal of Intelligent Material Systems and Structures, 2014, 25(7): 772-785
|
[9] |
Rivero AE, Fournier S, Manolesos M, et al. Experimental aerodynamic comparison of active camber morphing and trailing edge flaps. AIAA Journal, 2021, 59(7): 2627-2640 doi: 10.2514/1.J059606
|
[10] |
Wang C, Khodaparast HH, Friswell MI. Conceptual study of a morphing winglet based on unsymmetrical stiffness. Aerospace Science and Technology, 2016, 58: 546-558
|
[11] |
Zhang J, Wang C, Shaw AD, et al. Passive energy balancing design for a linear actuated morphing wingtip structure. Aerospace Science and Technology, 2020, 107: 106279 doi: 10.1016/j.ast.2020.106279
|
[12] |
王晨, 杨洋, 沈星等. 用于变体飞行器的波纹板等效强度模型及其优化设计. 航空学报, 2022, 43(6): 526146 (Wang Chen, Shen Yang, Shen Xing, et al. An equivalent strength model of courrgated panel and optimization design for morphing aircraft. Acta Aeronautica et Astronautica Sinica, 2022, 43(6): 526146 (in Chinese)
|
[13] |
张盛, 杨宇, 王志刚等. 变弯度机翼后缘偏心梁设计与验证. 航空学报, 2022, 43(6): 525892 (Zhang Sheng, Yang Yu, Wang Zhigang, et al. Design and validation of eccentric beam for variable camber trailing edge. Acta Aeronautica et Astronautica Sinica, 2022, 43(6): 525892 (in Chinese)
|
[14] |
Woods BKS, Friswell MI. Preliminary investigation of a fishbone active camber concept//The ASME 2012 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, 2012
|
[15] |
Rivero AE, Fournier S, Heeb RM, et al. Design, manufacture and wind tunnel test of a modular FishBAC wing with novel 3D printed skins. Applied Sciences, 2022, 12(2): 652
|
[16] |
杨翰雯, 胡德英, 何景武. 大展弦比机翼振动特性的工程算法平台研究. 飞机设计, 2020, 4(3): 65-77 (Yang Hanwen, Hu Deying, He Jingwu. Research on engineering algorithm platform for vibration characteristic of wing with high aspect ratio. Aircraft Design, 2020, 4(3): 65-77 (in Chinese) doi: 10.19555/j.cnki.1673-4599.2020.06.002
|
[17] |
陈桂彬, 邹丛青, 杨超. 气动弹性设计基础. 北京: 北京航空航天大学出版社, 2004
Chen Guibin, Zou Congqing, Yang Chao. Fundamentals of Aeroelastic Design. Beijing: Beihang University Press, 2004 (in Chinese)
|
[18] |
陈洋, 王正杰, 郭士钧. 柔性翼飞行器刚柔耦合动态特性研究刚柔耦合动态特性研究. 北京理工大学学报, 2017, 37(10): 1061-1066 (Chen Yang, Wang Zhengjie, Guo Shijun. Analysis of rigid-flexible coupling dynamic characteristics of flexible wing aircraft. Transactions of Beijing Institute of Technology, 2017, 37(10): 1061-1066 (in Chinese)
|
[19] |
张亚滨, 高恒烜, 李书. 复合材料机翼结构动力学分析. 飞机设计, 2015, 35(3): 11-15 (Zhang Yabin, Gao Hengxuan, Li Shu. Dynamic analysis of composite materials wing structure. Aircraft Design, 2015, 35(3): 11-15 (in Chinese) doi: 10.19555/j.cnki.1673-4599.2015.03.003
|
[20] |
王松松, 郭翔鹰, 王帅博. 变截面Z型折叠机翼振动特性的有限元与实验分析. 动力学与控制学报, 2020, 18(6): 84-89 (Wang Songsong, Guo Xiangying, Wang Shuaibo. Finite element analysis and experiment on vibration of Z-shaped morphing wing with variable section. Journal of Dynamics and Control, 2020, 18(6): 84-89 (in Chinese)
|
[21] |
田坤黉, 谷良贤, 王洪伟. 基于Hamilton原理的大展弦比直机翼固有特性分析. 机械强度, 2010, 32(5): 854-858 (Tian Kunhong, Gu Liangxian, Wang Hongwei. Inherence characteristic analysis of high apect ration wing based on Hamilton’s principle. Journal of Mechanical Strength, 2010, 32(5): 854-858 (in Chinese) doi: 10.16579/j.issn.1001.9669.2010.05.025
|
[22] |
Woods BKS, Friswell MI. Structual analysis of the fish bone active camber concept//Proceedings of the AIDAA XXII Conference, 2013
|
[23] |
Woods BKS, Friswell MI. Structural characterization of the fish bone active camber morphing airfoil//22nd AIAA/ASME/AHS Adaptive Structures Conference, 2014
|
[24] |
Woods BKS, Dayyani I, Friswell MI. Fluid/structure-interaction analysis of the fish-bone-active-camber morphing concept. Journal of Aircraft, 2015, 52(1): 307-319 doi: 10.2514/1.C032725
|
[25] |
Zhang J, Shaw AD, Wang C, et al. Aeroelastic model and analysis of an active camber morphing wing. Aerospace Science and Technology, 2021, 111: 106534 doi: 10.1016/j.ast.2021.106534
|
[26] |
Hildebrand FB, Advanced calculus for applications. 2nd Edition. Englewood Cliffs: Prentice Hall, 1976
|
[27] |
徐芝纶. 弹性力学 (上册), 第5版. 北京: 高等教育出版社, 2006
Xu Zhilun. Elasticity Mechanics (Volume 1), 5th edn. Beijing: Higher Education Press, 2006 (in Chinese)
|
[28] |
Naguleswaran S. Transverse vibration of an uniform Euler-Bernoulli beam under linearly varying axial force. Joumal of Sound and Vibration, 2004, 275(1-2): 47-57 doi: 10.1016/S0022-460X(03)00741-7
|
[29] |
徐腾飞, 向天宇, 赵人达. 变截面Euler-Bernoulli梁在轴力作用下固有振动的级数解. 振动与冲击, 2007, 26(11): 99-101 (Xu Tengfei, Xiang Tianyu, Zhao Renda. Series solution of natural vibration of the variable cross-section Euler-Bernoulli beam under axial force. Journal of Vibration and Shock, 2007, 26(11): 99-101 (in Chinese) doi: 10.3969/j.issn.1000-3835.2007.11.023
|
[30] |
邢誉峰, 李敏. 计算固体力学原理与方法. 北京: 北京航空航天大学出版社, 2011
Xing Yufeng, Li Min. The Theory and Method of Computational Solid Mechanics. Beijing: Beihang University Press, 2011 (in Chinese)
|
[31] |
杜运兴, 程鹏, 周芬. 变截面功能梯度Timoshenko梁的自由振动分析. 湖南大学学报(自然科学版), 2021, 48(5): 55-62 (Du Yunxing, Cheng Peng, Zhou Fen. Free vibration analysis of functionally graded Timoshenko beams with variable section. Journal of Hunan University (Natural Sciences)
|
[32] |
Şimşek M. Fundamental frequency analysis of functionally graded beams by using different higher-order beam theories. Nuclear Engineering and Design, 2010, 240(4): 697-705
|
[33] |
殷雅俊, 范钦珊, 王晶等. 材料力学, 第3版. 北京: 高等教育出版社, 2019
Yin Yajun, Fan Qinshan, Wang Jing, et al. Mechanics of Materials, 3rd edn. Beijing: Higher Education Press, 2019 (in Chinese)
|
[34] |
邢誉峰, 李敏. 工程振动基础. 北京: 北京航空航天大学出版社, 2011
Xing Yufeng, Li Min. The Foundation of Engineering Vibration. Beijing: Beihang University Press, 2011 (in Chinese)
|