Citation: | Wu Kangling, Ye Zhengyin, Ye Kun, Hong Zheng. Mechanical characteristics of the deformation of bird feathers in airflow. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(4): 874-884. DOI: 10.6052/0459-1879-22-520 |
[1] |
Videler JJ. Avian Flight. Oxford: Oxford University Press, 2006
|
[2] |
Lincoln FC, Peterson SR. Migration of Birds. Washington: Fish & Wildlife Service, US Department of the Interior, 1979
|
[3] |
Ryan P. The wandering albatross. Incon of the Oceans, 2003, 56(1): 29-35
|
[4] |
Tucker VA, Heine C. Aerodynamics of gliding flight in a harris’ hawk, parabuteo unicinctus. Journal of Experimental Biology, 1990, 149(1): 469-489 doi: 10.1242/jeb.149.1.469
|
[5] |
Parfitt AR, Vincent JFV. Drag reduction in a swimming humboldt penguin, spheniscus humboldti, when the boundary layer is turbulent. Journal of Bionic Engineering, 2005, 2(2): 57-62 doi: 10.1007/BF03399481
|
[6] |
Lznearzs B. The aerodynamic performance of the wing in red-shouldered hawk buteo linearis and a possible aeroelastic role of wing-tip slots. Short Communications, 1981, 123(2): 239-247
|
[7] |
Shelton A, Tomar A, Prasad J, et al. Active multiple winglets for improved unmanned-aerial-vehicle performance. Journal of Aircraft, 2006, 43(1): 110-116 doi: 10.2514/1.13987
|
[8] |
KleinHeerenbrink M, Christoffer Johansson L, Hedenström A. Multi-cored vortices support function of slotted wing tips of birds in gliding and flapping flight. Journal of the Royal Society Interface, 2017, 14(130): 20170099
|
[9] |
Muthuramalingam M, Talboys E, Wagner H, et al. Flow turning effect and laminar control by the 3D curvature of leading edge serrations from owl wing. Bioinspiration and Biomimetics, 2020, 16(2): 026010
|
[10] |
Moreau DJ, Doolan CJ. Noise-reduction mechanism of a flat-plate serrated trailing edge. AIAA Journal, 2013, 51(10): 2513-2522 doi: 10.2514/1.J052436
|
[11] |
Simplicio IB, Nino GF, Breidenthal RE. Aerodynamic effects of trailing edge serrations at low reynolds numbers//AIAA Scitech Forum 2022, 2022
|
[12] |
Arivoli D, Singh I, Suriyanarayanan P. Rudimentary emulation of covert feathers on low-AR wings for poststall lift enhancement. AIAA Journal, 2020, 58(2): 501-516 doi: 10.2514/1.J058562
|
[13] |
林立辉, 叶坤, 叶正寅. 涡襟翼在不同雷诺数下的控制分离特性研究. 航空工程进展, 2021, 12(3): 37-45 (Lin Lihui, Ye Kun, Ye Zhengyin. Research on the separation control characteristics of vortex flap under different reynolds numbers. Advance in Aeronautical Science and Engineering, 2021, 12(3): 37-45 (in Chinese) doi: 10.16615/j.cnki.1674-8190.2021.03.05
|
[14] |
Meyer R, Hage W, Bechert DW, et al. Separation control by self-activated movable flaps. AIAA Journal, 2007, 45(1): 191-199 doi: 10.2514/1.23507
|
[15] |
Reiswich A, Finster M, Heinrich M, et al. Stereo vision investigation of elastic flap kinematics in separated flow. Journal of Fluids and Structures, 2022, 114: 103711 doi: 10.1016/j.jfluidstructs.2022.103711
|
[16] |
郝文星, 李春. 自适应襟翼流动控制改进方法的提出与验证. 中国电机工程学报, 2020, 40(14): 4538-4546 (Hao Wenxing, Li Chun. Proposal and validation of improving methods for flow control performance of the adaptive flap. Proceedings of the CSEE, 2020, 40(14): 4538-4546 (in Chinese) doi: 10.13334/J.0258-8013.PCSEE.191395
|
[17] |
Othman AK, Nair NJ, Sandeep A, et al. Numerical and experimental study of a covert-inspired passively deployable flap for aerodynamic lift enhancement//AIAA Aviation 2022 Forum, 2022
|
[18] |
Nair NJ, Goza A. Effects of torsional stiffness and inertia on a passively deployable flap for aerodynamic lift enhancement//AIAA SciTech Forum, 2022
|
[19] |
Liu T, Montefort J, Liou W, et al. Effects of flexible fin on low-frequency oscillation in poststall flows. AIAA Journal, 2010, 48(6): 1235-1247 doi: 10.2514/1.J050205
|
[20] |
Reiswich A, Finster M, Heinrich M, et al. Effect of flexible flaps on lift and drag of laminar profile flow. Energies, 2020, 13(5): 1-16
|
[21] |
宋笔锋, 稂鑫雨, 薛栋等. 鸟翼空气动力学机理的研究现状和进展综述. 中国科学, 2022, 52(6): 893-910 (Song Bifeng, Lang Xinyu, Xue Dong, et al. A review of the research status and progress on the aerodynamic mechanism of bird wings. Scientia Sinical Technologica, 2022, 52(6): 893-910 (in Chinese)
|
[22] |
Quan P, Zhong S, Liu Q, et al. Attenuation of flow separation using herringbone riblets at M∞=5. AIAA Journal, 2019, 57(1): 142-152 doi: 10.2514/1.J057215
|
[23] |
Chen HW, Rao FG, Zhang DY, et al. Drag reduction study about bird feather herringbone riblets. Applied Mechanics and Materials, 2014, 461: 201-205
|
[24] |
Nugroho B, Hutchins N, Monty JP. Large-scale spanwise periodicity in a turbulent boundary layer induced by highly ordered and directional surface roughness. International Journal of Heat and Fluid Flow, 2013, 41: 90-102 doi: 10.1016/j.ijheatfluidflow.2013.04.003
|
[25] |
Gao R, Chen K, Li Y, et al. Aerodynamic performance enhancement of horizontal axis wind turbines by herringbone groove structure on blades. Mechanisms and Machine Science, 2022, 111: 709-720
|
[26] |
Liu Q, Zhong S, Li L. Investigation of riblet geometry and start locations of herringbone riblets on pressure losses in a linear cascade at low Reynolds numbers. Journal of Turbomachinery, 2020, 142(10): 1-14
|
[27] |
Liu Q, Zhong S, Li L. Reduction of pressure losses in a linear cascade using herringbone riblets//Turbo Expo: Power for Land, Sea, and Air, 2017
|
[28] |
Li Q, Pan M, Zhou Q, et al. Turbulent drag modification in open channel flow over an anisotropic porous wall. Physics of Fluids, 2020, 32(1): 015117 doi: 10.1063/1.5130647
|
[29] |
Ali SAS, Azarpeyvand M, Da Silva CRI. Trailing-edge flow and noise control using porous treatments. Journal of Fluid Mechanics, 2018, 850: 83-119 doi: 10.1017/jfm.2018.430
|
[30] |
Geyer T, Sarradj E, Fritzsche C. Measurement of the noise generation at the trailing edge of porous airfoils. Experiments in Fluids, 2010, 48(2): 291-308 doi: 10.1007/s00348-009-0739-x
|
[31] |
Wang S, Yang Z, Gong G, et al. Icephobicity of penguins spheniscus humboldti and an artificial replica of penguin feather with air-infused hierarchical rough structures. Journal of Physical Chemistry C, 2016, 120(29): 15923-15929 doi: 10.1021/acs.jpcc.5b12298
|
[32] |
Ma L, Li H, Hu H. An experimental study on the dynamics of water droplet impingement onto bio-inspired surfaces with different wettabilities//55th AIAA Aerospace Sciences Meeting, 2017
|
[33] |
叶正寅, 洪正, 武洁. 柔性仿羽毛结构抑制边界层转捩的初步探索. 空气动力学学报, 2020, 1825(6): 1173-1183 (Ye Zhengyin, Hong Zheng, Wu Jie. Suppression of flexible feather-like structure on boundary layer transition. Acta Aerodynamica Sinica, 2020, 1825(6): 1173-1183 (in Chinese) doi: 10.7638/kqdlxxb-2020.0094
|
[34] |
Ye K, Ye Z, Li C, et al. Effects of the aerothermoelastic deformation on the performance of the three-dimensional hypersonic inlet. Aerospace Science and Technology, 2019, 84: 747-762 doi: 10.1016/j.ast.2018.11.015
|
[35] |
Ye K, Ye Z, Feng Z, et al. Numerical investigation on the aerothermoelastic deformation of the hypersonic wing. Acta Astronautica, 2019, 160: 76-89 doi: 10.1016/j.actaastro.2019.04.028
|
[36] |
洪正, 叶正寅. 各向异性柔性壁上二维T-S 波演化的数值研究. 力学学报, 2021, 53(5): 1302-1312
Hong Zheng, Ye Zhengyin, Numerical investigation of the evolution of two-dimensional T-S waves on an anisotropic compliant wall. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(5): 1302-1312 (in Chinese)
|
[37] |
Weiss JM, Smith WA. Preconditioning applied to variable and constant density flow. AIAA Journal, 1995, 33(11): 2050-2057 doi: 10.2514/3.12946
|
[38] |
Lopes JL, Païdoussis MP, Semler C. Linear and nonlinear dynamics of cantilevered cylinders in axial flow. Part 2: The equations of motion. Journal of Fluids and Structures, 2002, 16(6): 715-737
|
[39] |
叶坤. 吸气式高速飞行器关键热气动弹性问题研究. [博士论文]. 西安: 西北工业大学, 2018
Ye Kun. Research on the critical aerothermoelastic problems for air-breathing hypersonic vehicle. [PhD Thesis]. Xi’an: Northwestern Polytechnical University, 2018 (in Chinese)
|
[40] |
高佳丽. 长耳鸮初级飞羽阻尼减振特性仿生研究. [博士论文]. 大连: 大连理工大学, 2015
Gao Jiali. Bionic study on the damping vibration characteristic of long-eared owl primary feather. [PhD Thesis]. Dalian: Dalian University of Technology, 2015 (in Chinese)
|
[1] | Cui Yuankai, Zhang Huan. STUDY OF THE EFFECTS OF INTER-PARTICLE COLLISIONS ON PARTICLE ACCUMULATION IN TURBULENT CHANNEL FLOWS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(2): 365-376. DOI: 10.6052/0459-1879-23-283 |
[2] | Wang Gengxiang, Ma Daolin, Liu Yang, Liu Caishan. RESEARCH PROGRESS OF CONTACT FORCE MODELS IN THE COLLISION MECHANICS OF MULTIBODY SYSTEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(12): 3239-3266. DOI: 10.6052/0459-1879-22-266 |
[3] | Guan Xinyan, Fu Qingfei, Liu Hu, Yang Lijun. NUMERICAL SIMULATION OF OLDROYD-B VISCOELASTIC DROPLET COLLISION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(3): 644-652. DOI: 10.6052/0459-1879-22-020 |
[4] | Chen Yinghong, Wang Yunjiang, Qiao Jichao. STRESS RELAXATION OF La30Ce30Al15Co25 METALLIC GLASS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(3): 740-748. DOI: 10.6052/0459-1879-20-013 |
[5] | Wei Xinrong, Duan Shaozhen, Sun Jinlong, Wang Wenda. VELOCITY PREDICTION OF SLOPE ROLLING STONE PARTICLE BASED ON COLLISION MODEL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(3): 707-715. DOI: 10.6052/0459-1879-20-039 |
[6] | Yang Ming, Liu Jubao, Yue Qianbei, Ding Yuqi, Wang Ming. NUMERICAL SIMULATION ON THE VORTEX-INDUCED COLLISION OF TWO SIDE-BY-SIDE CYLINDERS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1785-1796. DOI: 10.6052/0459-1879-19-224 |
[7] | Li Zhihui, Jiang Xinyu, Wu Junlin, Peng Aoping. GAS-KINETIC UNIFIED ALGORITHM FOR BOLTZMANN MODEL EQUATION IN ROTATIONAL NONEQUILIBRIUM AND ITS APPLICATION TO THE WHOLE RANGE FLOW REGIMES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(3): 336-351. DOI: 10.6052/0459-1879-13-246 |
[8] | Qin Zhiying, Li Qunhong. BORDER-COLLISION BIFURCATION IN A KIND OF NON-SMOOTH MAPS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(1): 25-29. DOI: 10.6052/0459-1879-12-317 |
[9] | Multi-Monte Carlo Methods for Inter-particle Collision[J]. Chinese Journal of Theoretical and Applied Mechanics, 2005, 37(5): 564-572. DOI: 10.6052/0459-1879-2005-5-2004-240 |
[10] | A STANDARD SOLUTION FOR THE DYNAMICS OF MULTI POINT COLLISION 1)[J]. Chinese Journal of Theoretical and Applied Mechanics, 1998, 30(2): 252-256. DOI: 10.6052/0459-1879-1998-2-1995-124 |