Citation: | Shen Guozhe, Wang Ruiyang, Xia Yang, Zheng Guojun. Large deformation and fracture analysis of thin plate bending based on peridynamics. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(2): 381-389. DOI: 10.6052/0459-1879-22-519 |
[1] |
高云凯, 杨欣, 金哲峰. 轿车车身刚度优化方法研究. 同济大学学报 (自然科学版), 2005, 33(8): 1095-1097
Gao Yunkai, Yang Xin, Jin Zhefeng. Study on method for optimizing car body stiffness. Journal of Tongji University (Natural Science), 2005, 33(8): 1095-1097 (in Chinese)
|
[2] |
Kim CS, Shin JG, Kim EK, et al. A study on classification algorithm of rectangle curved hull plates for plate fabrication. Journal of Ship Production and Design, 2016, 32(3): 166-173 doi: 10.5957/jspd.2016.32.3.166
|
[3] |
Sussman T, Bathe KJ. 3D-shell elements for structures in large strains. Computers & Structures, 2013, 122: 2-12
|
[4] |
Silling SA. Reformulation of elasticity theory for discontinuities and long-range forces. Journal of the Mechanics and Physics of Solids, 2000, 48(1): 175-209 doi: 10.1016/S0022-5096(99)00029-0
|
[5] |
Agwai A, Guven I, Madenci E. Predicting crack propagation with peridynamics: a comparative study. International Journal of Fracture, 2011, 171(1): 65-78 doi: 10.1007/s10704-011-9628-4
|
[6] |
Kilic B, Madenci E. Prediction of crack paths in a quenched glass plate by using peridynamic theory. International Journal of Fracture, 2009, 156(2): 165-177 doi: 10.1007/s10704-009-9355-2
|
[7] |
Nguyen CT, Oterkus S. Ordinary state-based peridynamic model for geometrically nonlinear analysis. Engineering Fracture Mechanics, 2020, 224: 106750 doi: 10.1016/j.engfracmech.2019.106750
|
[8] |
Madenci E, Oterkus S. Ordinary state-based peridynamics for plastic deformation according to von Mises yield criteria with isotropic hardening. Journal of the Mechanics and Physics of Solids, 2016, 86: 192-219 doi: 10.1016/j.jmps.2015.09.016
|
[9] |
Hu YL, Madenci E. Bond-based peridynamic modeling of composite laminates with arbitrary fiber orientation and stacking sequence. Composite Structures, 2016, 153: 139-175 doi: 10.1016/j.compstruct.2016.05.063
|
[10] |
Madenci E, Yaghoobi A, Barut A, et al. Peridynamic modeling of compression after impact damage in composite laminates. Journal of Peridynamics and Nonlocal Modeling, 2021, 3(4): 327-347 doi: 10.1007/s42102-021-00054-1
|
[11] |
Zhu N, De Meo D, Oterkus E. Modelling of granular fracture in polycrystalline materials using ordinary state-based peridynamics. Materials, 2016, 9(12): 977 doi: 10.3390/ma9120977
|
[12] |
Zhang G, Le Q, Loghin A, et al. Validation of a peridynamic model for fatigue cracking. Engineering Fracture Mechanics, 2016, 162: 76-94 doi: 10.1016/j.engfracmech.2016.05.008
|
[13] |
Jung J, Seok J. Mixed-mode fatigue crack growth analysis using peridynamic approach. International Journal of Fatigue, 2017, 103: 591-603 doi: 10.1016/j.ijfatigue.2017.06.008
|
[14] |
Oterkus S, Madenci E, Agwai A. Peridynamic thermal diffusion. Journal of Computational Physics, 2014, 265: 71-96 doi: 10.1016/j.jcp.2014.01.027
|
[15] |
Nguyen CT, Oterkus S. Peridynamics for the thermomechanical behavior of shell structures. Engineering Fracture Mechanics, 2019, 219: 106623 doi: 10.1016/j.engfracmech.2019.106623
|
[16] |
Silling SA, Bobaru F. Peridynamic modeling of membranes and fibers. International Journal of Non-Linear Mechanics, 2005, 40(2-3): 395-409 doi: 10.1016/j.ijnonlinmec.2004.08.004
|
[17] |
Taylor M, Steigmann DJ. A two-dimensional peridynamic model for thin plates. Mathematics and Mechanics of Solids, 2015, 20(8): 998-1010 doi: 10.1177/1081286513512925
|
[18] |
O’Grady J, Foster J. Peridynamic plates and flat shells: A non-ordinary, state-based model. International Journal of Solids and Structures, 2014, 51(25-26): 4572-4579 doi: 10.1016/j.ijsolstr.2014.09.003
|
[19] |
Yang Z, Vazic B, Diyaroglu C, et al. A Kirchhoff plate formulation in a state-based peridynamic framework. Mathematics and Mechanics of Solids, 2020, 25(3): 727-738 doi: 10.1177/1081286519887523
|
[20] |
Yang Z, Oterkus E, Oterkus S. A state-based peridynamic formulation for functionally graded Kirchhoff plates. Mathematics and Mechanics of Solids, 2021, 26(4): 530-551 doi: 10.1177/1081286520963383
|
[21] |
Shen G, Xia Y, Li W, et al. Modeling of peridynamic beams and shells with transverse shear effect via interpolation method. Computer Methods in Applied Mechanics and Engineering, 2021, 378: 113716 doi: 10.1016/j.cma.2021.113716
|
[22] |
Shen G, Xia Y, Hu P, et al. Construction of peridynamic beam and shell models on the basis of the micro-beam bond obtained via interpolation method. European Journal of Mechanics-A/Solids, 2021, 86: 104174 doi: 10.1016/j.euromechsol.2020.104174
|
[23] |
Diyaroglu C, Oterkus E, Oterkus S, et al. Peridynamics for bending of beams and plates with transverse shear deformation. International Journal of Solids and Structures, 2015, 69: 152-168
|
[24] |
Hu YL, Yu Y, Madenci E. Peridynamic modeling of composite laminates with material coupling and transverse shear deformation. Composite Structures, 2020, 253: 112760 doi: 10.1016/j.compstruct.2020.112760
|
[25] |
Nguyen CT, Oterkus S. Ordinary state-based peridynamics for geometrically nonlinear analysis of plates. Theoretical and Applied Fracture Mechanics, 2021, 112: 102877 doi: 10.1016/j.tafmec.2020.102877
|
[26] |
Lubineau G, Azdoud Y, Han F, et al. A morphing strategy to couple non-local to local continuum mechanics. Journal of the Mechanics and Physics of Solids, 2012, 60(6): 1088-1102 doi: 10.1016/j.jmps.2012.02.009
|
[27] |
Han F, Lubineau G, Azdoud Y, et al. A morphing approach to couple state-based peridynamics with classical continuum mechanics. Computer Methods in Applied Mechanics and Engineering, 2016, 301: 336-358 doi: 10.1016/j.cma.2015.12.024
|
[28] |
Zheng G, Li L, Han F, et al. Coupled peridynamic model for geometrically nonlinear deformation and fracture analysis of slender beam structures. International Journal for Numerical Methods in Engineering, 2022, 123(16): 3658-3680 doi: 10.1002/nme.6984
|
[29] |
Fung YC. Foundations of Solid Mechanics. Prentice Hall, 1965
|
[30] |
Zheng G, Yan Z, Xia Y, et al. Peridynamic shell model based on micro-beam bond. CMES-Computer Modeling in Engineering & Sciences, 2023, 3: 1975-1995
|
[31] |
Foster JT, Silling SA, Chen W. An energy based failure criterion for use with peridynamic states. International Journal for Multiscale Computational Engineering, 2011, 9(6): 675-687 doi: 10.1615/IntJMultCompEng.2011002407
|
[32] |
Muscat-Fenech CM, Atkins AG. Out-of-plane stretching and tearing fracture in ductile sheet materials. International Journal of Fracture, 1997, 84(4): 297-306 doi: 10.1023/A:1007325719337
|
[33] |
Areias P, Rabczuk T, Msekh MA. Phase-field analysis of finite-strain plates and shells including element subdivision. Computer Methods in Applied Mechanics and Engineering, 2016, 312: 322-350 doi: 10.1016/j.cma.2016.01.020
|
[34] |
Mai YW, He H, Leung R, et al. Fracture Mechanics: 26th Volume. Philadelphia: ASTM, 1995: 587-599
|
[1] | Gong Bingqing, Zheng Zechang, Chen Yanmao, Liu Jike. A FAST CALCULATION FOR THE SYMMETRY BREAKING POINT OF QUASI-PERIODIC RESPONSES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(11): 3181-3188. DOI: 10.6052/0459-1879-22-324 |
[2] | Zhao Yaobing, Zheng Panpan, Chen Lincong, Kang Houjun. STUDY ON NONLINEAR COUPLED VIBRATIONS OF DAMAGED SUSPENDED CABLES WITH SYMMETRY-BREAKING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(2): 471-481. DOI: 10.6052/0459-1879-21-542 |
[3] | Wu Kui, Shao Zhushan, Qin Su. INVESTIGATION ON THE MECHANICAL BEHAVIOR OF TUNNEL SUPPORTED BY YIELDING SUPPORTS IN RHEOLOGICAL ROCKS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(3): 890-900. DOI: 10.6052/0459-1879-20-006 |
[4] | Ding Zhouxiang. ONE-DIMENSIONAL SEEPAGE FORCE AND BUOYANCY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(5): 1154-1162. DOI: 10.6052/0459-1879-17-001 |
[5] | Zou Jinfeng, Li Shuaishuai, Zhang Yong, Yuan Zhen. SOLUTION AND ANALYSIS OF CIRCULAR TUNNEL FOR THE STRAIN-SOFTENING ROCK MASSES CONSIDERING THE AXIAL IN SITU STRESS AND SEEPAGE FORCE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(5): 747-755. DOI: 10.6052/0459-1879-14-029 |
[6] | Zhu Bojing, Shi Yaolin. STUDY OF TIGHT SANDSTONE PERMEABILITY FROM LATTICE BOLTZMANN & DIGITAL ROCK MODEL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(3): 384-394. DOI: 10.6052/0459-1879-12-273 |
[7] | Miao Xiexing Zhanqing Chen Xianbiao Mao. Study on nonlinear dynamics of non-isothermal flow in broken rock[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(4): 652-659. DOI: 10.6052/0459-1879-2010-4-lxxb2008-767 |
[8] | REFLECTION AND DIFFRACTION OF THE 2-D DAM BREAK WAVE[J]. Chinese Journal of Theoretical and Applied Mechanics, 1992, 24(4): 493-499. DOI: 10.6052/0459-1879-1992-4-1995-766 |
[9] | Jiachun Li. FORCES EXERTED BY NONLINEAR PERIODIC AND BREAKING WAVES ON PILES[J]. Chinese Journal of Theoretical and Applied Mechanics, 1991, 23(4): 491-196. DOI: 10.6052/0459-1879-1991-4-1995-867 |
[10] | RIGID-BODY JOINT-ELEMENT METHOD AND STABLITY ANALYSIS OF JOINTED ROCK MASSES[J]. Chinese Journal of Theoretical and Applied Mechanics, 1990, 22(5): 630-636. DOI: 10.6052/0459-1879-1990-5-1995-993 |