Citation: | Huang Congyi, Zhao Weiwen, Wan Decheng. Simulation of the motion of an elastic hull in regular waves based on MPS-FEM method. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(12): 3319-3332. DOI: 10.6052/0459-1879-22-468 |
[1] |
王加夏, 周天九, 刘昆等. 规则波迎浪砰击下三维船体耦合响应研究. 江苏科技大学学报(自然科学版), 2020, 34(4): 13-24 (Wang Jiaxia, Zhou Tianjiu, Liu Kun, et al. Fluid-structure coupling response of a three dimensional ship under regular head wave slamming loads. Journal of Jiangsu University of Science and Technology (Natural Science Edition)
|
[2] |
Oberhagemann J, Holtmann M, Moctar O, et al. Stern slamming of a LNG carrier. Journal of Offshore Mechanics & Arctic Engineering, 2009, 131(3): 1672-1682
|
[3] |
Lakshmynarayanana P, Temarel P, Chen Z. Coupled fluid structure interaction to model three-dimensionaldynamic behaviour of ship in waves//7th International Conference on Hydroelasticity in Marine Technology, Split, Croatia, 2015
|
[4] |
Kim Y, Kim K, Kim Y. Analysis of hydroelasticity of floating shiplike structure in time domain using a fully coupled hybrid BEM-FEM. Journal of Ship Research, 2009, 53(1): 31-47 doi: 10.5957/jsr.2009.53.1.31
|
[5] |
Malenica S, Tuitman J, Bigot F, et al. Some Aspects of 3D Linear Hydroelastic Models of Springing. International Conference on Hydrodynamics, France, 2008.
|
[6] |
Gao R, Ren B, Wang G, et al. Numerical modelling of regular wave slamming on surface of open-piled structures with the corrected SPH method. Applied Ocean Research, 149 2012, 34: 173-186
|
[7] |
Omidvar P, Stansby P, Rogers B. Wave body interaction in 2D using smoothed particle hydrodynamics (SPH) with variable particle mass. International Journal for Numerical Methods in Fluids, 2012, 68(6): 686-705 doi: 10.1002/fld.2528
|
[8] |
Sueyoshi M, Kashiwagi M, Naito S. Numerical simulation of wave-induced nonlinear motions of a two-dimensional floating body by the moving particle semi-implicit method. Journal of Marine Science and Technology, 2008, 13(2): 85-94 doi: 10.1007/s00773-007-0260-y
|
[9] |
Sueyoshi M. Numerical simulation of extreme motions of a floating body by MPS method. Bridges Across the Oceans, Kobe, Japan, 2004, 1: 566-572
|
[10] |
饶成平. 基于MPS-FEM耦合方法研究孤立波对弹性结构物的砰击. [硕士论文]. 上海: 上海交通大学, 2018
Rao Chengping. Numerical investigation of solitary wave-induced slamming on flexible structure by MPS-FEM coupled method. [Master Thesis]. Shanghai: Shanghai Jiao Tong University, 2018 (in Chinese)
|
[11] |
Zhang G, Rao C, Wan D. Numerical study of solitary wave slamming on a 3-D flexible plate by MPS-FEM Coupled Method//The Twenty-eighth International Ocean and Polar Engineering Conference (ISOPE2018), Sapporo, Japan, June 10-15, 2018: 46-53
|
[12] |
Lind S, Xu R, Stansby P, et al. Incompressible smoothed particle hydrodynamics for free-surface flows: A generalised diffusion-based algorithm for stability and validations for impulsive flows and propagating waves. Journal of Computational Physics, 2012, 231(4): 1499-1523 doi: 10.1016/j.jcp.2011.10.027
|
[13] |
Sun P, Luo M, Touzé DL, et al. The suction effect during freak wave slamming on a fixed platform deck: Smoothed particle hydrodynamics simulation and experimental study. Physics of Fluids, 2019, 31(11): 117108 doi: 10.1063/1.5124613
|
[14] |
Zhang G, Zhao W, Wan D. Moving particle semi-implicit method coupled with finite element method for hydroelastic responses of floating structures in waves. European Journal of Mechanics-B Fluids, 2022, 95: 63-82 doi: 10.1016/j.euromechflu.2022.04.005
|
[15] |
Zhang Y, Wan, D. Numerical study of interactions between waves and free rolling body by IMPS method. Computers and Fluids, 2017, 155: 124133
|
[16] |
Xie F, Zhao W, Wan D. MPS-DEM coupling method for interaction between fluid and thin elastic structures. Ocean Engineering, 2021, 236: 109449 doi: 10.1016/j.oceaneng.2021.109449
|
[17] |
Zhang G, Zha R, Wan D. MPS–FEM coupled method for 3D dam-break flows with elastic gate structures. European Journal of Mechanics-B Fluids, 2022, 94: 171-189 doi: 10.1016/j.euromechflu.2022.02.014
|
[18] |
Sun Y, Xi G, Sun Z. A fully Lagrangian method for fluid–structure interaction problems with deformable floating structure. Journal of Fluids and Structures, 2019, 90: 379-395 doi: 10.1016/j.jfluidstructs.2019.07.005
|
[19] |
Sun Z, Djidjeli K, Xing J, et al. Coupled MPS-modal superposition method for 2 D nonlinear fluid-structure interaction problems with free surface. Journal of Fluids and Structures, 2016, 61: 295-323
|
[20] |
Sun Z, Zhang G, Zong Z, et al. Numerical analysis of violent hydroelastic problems based on a mixed MPS-mode superposition method. Ocean Engineering, 2019, 179: 285-297
|
[21] |
Koshizuka S, Nobe A, Oka Y. Numerical analysis of breaking waves using the moving particle semi-implicit method. International Journal for Numerical Methods in Fluids, 1998, 26(7): 751-769 doi: 10.1002/(SICI)1097-0363(19980415)26:7<751::AID-FLD671>3.0.CO;2-C
|
[22] |
Khayyer A, Gotoh H. Development of CMPS method for accurate water-surface tracking in breaking waves. Coastal Engineering Journal, 2008, 50(2): 179-207 doi: 10.1142/S0578563408001788
|
[23] |
Tanaka M, Masunaga T. Stabilization and smoothing of pressure in MPS method by quasi-compressibility. Journal of Computational Physics, 2010, 229(11): 4279-4290 doi: 10.1016/j.jcp.2010.02.011
|
[24] |
张雨新. 改进的MPS方法及其三维并行计算研究. [博士论文]. 上海: 上海交通大学, 2014
Zhang Yuxin. Development and application of 3D parallel improved meshless MPS method. [PhD Thesis]. Shanghai: Shanghai Jiao Tong University, 2014 (in Chinese))
|
[25] |
Khayyer A, Gotoh H. Modified moving particle semi-implicit methods for the prediction of 2D wave impact pressure. Coastal Engineering, 2009, 56(4): 419-440 doi: 10.1016/j.coastaleng.2008.10.004
|
[26] |
Khayyer A, Gotoh H. A higher order Laplacian model for enhancement and stabilization of pressure calculation by the MPS method. Applied Ocean Research, 2010, 32(1): 124-131 doi: 10.1016/j.apor.2010.01.001
|
[27] |
Lee B, Park J, Kim M, et al. Step-by-step improvement of MPS method in simulating violent free-surface motions and impact-loads. Computer Methods in Applied Mechanics and Engineering, 2011, 200: 1113-1125 doi: 10.1016/j.cma.2010.12.001
|
[28] |
Zhang, Y, Wan D, Hino T. Comparative study of MPS method and level-set method for sloshing flows. Journal of Hydrodynamics, 2014, 26(4): 577-585 doi: 10.1016/S1001-6058(14)60065-2
|
[29] |
Newmark N. A Method of computation for structural dynamics. Journal of the Engineering Mechanics Division. 1959, 85(3): 67-94
|
[30] |
Turek S, Hron J. Proposal for numerical benchmarking of fluid-structure interaction between an elastic object and laminar incompressible flow//Fluid structure Interaction, Springer, 2006: 371–385
|
[31] |
Sun PN, Touze DL, Oger G, et al. An accurate FSI-SPH modeling of challenging fluid-structure interaction problems in two and three dimensions. Ocean Engineering, 2021, 211: 109552
|
[1] | Wang Chao, Du Wei, Du Peng, Li Zhuoyue, Zhao Sen, Hu Haibao, Chen Xiaopeng, Huang Xiao. INFLUENCE OF DIVING DEPTH ON MOTION RESPONSE AND LOAD CHARACTERISTICS OF SUBMERGED BODY UNDER ACTION OF INTERNAL SOLITARY WAVE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(7): 1921-1933. DOI: 10.6052/0459-1879-21-649 |
[2] | Liu Lu, Yin Zhenyu, Ji Shunying. HIGH-PERFORMANCE DILATED POLYHEDRAL BASED DEM FOR ICE LOADS ON SHIP AND OFFSHORE PLATFORM STRUCTURES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1720-1739. DOI: 10.6052/0459-1879-19-250 |
[3] | Zhang Chongwei, Ning Dezhi. MOTION SIMULATION OF FLOATING STRUCTURE WITH MULTIPLE SLOSHING TANKS BASED ON TIME-DOMAIN DECOUPLING ALGORITHM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1650-1665. DOI: 10.6052/0459-1879-19-210 |
[4] | Li Ye, Wang Benlong, Zhan Shige. REVIEW OF THE 2018 SYMPOSIUM ON APPLICATION OF FLUID-STRUCTURE INTERACTION IN NAVAL ARCHITECTURE AND OFFSHORE RENEWABLE ENERGY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(1): 292-297. DOI: 10.6052/0459-1879-18-445 |
[5] | Liu Jingbo, Bao Xin, Tan Hui, Wang Jianping, Guo Dong. DYNAMICAL ARTIFICIAL BOUNDARY FOR FLUID MEDIUM IN WAVE MOTION PROBLEMS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(6): 1418-1427. DOI: 10.6052/0459-1879-17-199 |
[6] | Li Zilin, Liu Yu, Sun Shanshan, Lu Yunliang, Ji Shunying. ANALYSIS OF SHIP MANEUVERING PERFORMANCES AND ICE LOADS ON SHIP HULL WITH DISCRETE ELEMENT MODEL IN BROKEN-ICE FIELDS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(6): 868-877. DOI: 10.6052/0459-1879-13-020 |
[7] | Sun Xu, Zhang Jiazhong, Huang Biwu. AN APPLICATION OF THE CBS SCHEME IN THE FLUID-MEMBRANE INTERACTION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(5): 787-791. DOI: 10.6052/0459-1879-13-003 |
[8] | Daguo Wang, Zhili Zou, Chun'an Tang. Study on nonlinear wave motions and wave forces on ship sections against vertical quay in a harbor[J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(6): 767-775. DOI: 10.6052/0459-1879-2006-6-2005-418 |
[9] | 有孔隙的耦合热弹性体动力学的一些基本原理[J]. Chinese Journal of Theoretical and Applied Mechanics, 1996, 28(1): 55-65. DOI: 10.6052/0459-1879-1996-1-1995-302 |
[10] | 利用对称性寻找浑沌运动[J]. Chinese Journal of Theoretical and Applied Mechanics, 1993, 25(3): 380-384. DOI: 10.6052/0459-1879-1993-3-1995-656 |
1. |
齐栋梁. 超收敛光滑再生梯度无网格配点法. 力学与实践. 2024(04): 820-829 .
![]() | |
2. |
刘华雩,高效伟,范伟龙. 分区有限线法及其在复合结构热应力分析中的应用. 力学学报. 2023(06): 1394-1406 .
![]() | |
3. |
周东谟,王辉,惠步青,吴晗旭,陈航. 基于梯度有限元法的HTPB推进剂药柱结构完整性分析. 固体火箭技术. 2023(05): 695-707 .
![]() | |
4. |
胡凯,高效伟,徐兵兵,郑颖人. 多孔介质弹性问题的单元微分法. 岩土工程学报. 2023(11): 2403-2410 .
![]() | |
5. |
胡凯,高效伟,徐兵兵. 求解固体力学问题的强-弱耦合形式单元微分法. 力学学报. 2022(07): 2050-2058 .
![]() | |
6. |
傅卓佳,李明娟,习强,徐文志,刘庆国. 物理信息依赖核函数配点法的研究进展. 力学学报. 2022(12): 3352-3365 .
![]() |