EI、Scopus 收录
中文核心期刊
Liu Chaoyu, Qu Feng, Li Jieqi, Bai Junqiang, Liu Chuanzhen, Bai Peng, Qian Zhansen. Aerodynamic optimization design of the vortex-shock integrated waverider in wide speed range. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(1): 70-83. DOI: 10.6052/0459-1879-22-412
Citation: Liu Chaoyu, Qu Feng, Li Jieqi, Bai Junqiang, Liu Chuanzhen, Bai Peng, Qian Zhansen. Aerodynamic optimization design of the vortex-shock integrated waverider in wide speed range. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(1): 70-83. DOI: 10.6052/0459-1879-22-412

AERODYNAMIC OPTIMIZATION DESIGN OF THE VORTEX-SHOCK INTEGRATED WAVERIDER IN WIDE SPEED RANGE

  • Received Date: September 03, 2022
  • Accepted Date: November 13, 2022
  • Available Online: November 14, 2022
  • The vortex-shock integrated wide-speed-range waverider could significantly improve aerodynamic performances of the traditional waverider at the low-speed state by introducing vortex effect, and has potential to be widely used in the overall aerodynamic design of the wide-speed-range aerospace vehicle in the future. However, the design of the vortex-shock integrated waverider does not consider the three-dimensional effect, low-speed effect, viscous effect and head/leading edge passivation effect during the establishment of reference flow field. So it still has potential to improve the wide-speed-range performances of the vortex-shock integrated waverider with the aerodynamic shape optimization method. In order to solve this problem, this paper develops an aerodynamic optimization design method for aircraft in wide speed range based on discrete adjoint by combining high-fidelity RANS solver, free deformation parameterization method, robust structural mesh deformation method, discrete adjoint method and sequential quadratic programming algorithm. Through the method, the aerodynamic optimization design in the wide speed range based on discrete adjoint is used to carry out for the vortex-shock integrated waverider in the subsonic and hypersonic flight conditions. The optimum configuration in the wide speed range is obtained through the aerodynamic optimization design and the flow mechanism is analyzed. The results show that compared with the original configuration, the optimum one increases the lift and lift-to-drag ratio of the vortex-shock integrated waverider more than 10% at low speed, while keeping the hypersonic lift and drag aerodynamic performance of the vehicle not fall. The performance improvement of the vehicle at low speed is attributed to the significant enhancement of the leeward vortex effect, resulting in a larger area of low pressure on the leeward surface to effectively increase the lift. The research shows that the gradient optimization based on discrete adjoint could further improve the aerodynamic performances of the vortex-shock integrated wide-speed-range waverider at high and low speed.
  • [1]
    戴今钊, 汤继斌, 陈海昕. 高超声速飞行器中的乘波设计综述. 战术导弹技术, 2021, 4: 1-15 (Dai Jinzhao, Tang Jibin, Chen Haixin. An overview of waverider design in hypersonic vehicles. Tactical Missile Technology, 2021, 4: 1-15 (in Chinese) doi: 10.16358/j.issn.1009-1300.2021.1.066
    [2]
    刘传振, 刘强, 白鹏等. 涡波效应宽速域气动外形设计. 航空学报, 2018, 39(7): 73-81 (Liu Chuanzhen, Liu Qiang, Bai Peng, et al. Planform-controllable waverider design integrating shock and vortex ef-fects. Acta Aeronautica et Astronautica Sinica, 2018, 39(7): 73-81 (in Chinese)
    [3]
    Dietrich K. The Aerodynamic Design of Aircraft. Reston, Virginia: AIAA, 2012: 448
    [4]
    易怀喜, 王逗, 李珺等. 涡升力乘波体发展研究综述. 航空工程进展, 2021, 12(6): 1-12 (Yi Huaixi, Wang Dou, Li Jun, et al. Overview on the development research of vortex lift waverider. Advances in Aeronautical Science and Engineering, 2021, 12(6): 1-12 (in Chinese) doi: 10.16615/j.cnki.1674-8190.2021.06.01
    [5]
    Rodi PE. Geometrical relationships for osculating cones and osculating flow field waveriders//The 49th Aerospace Science Meeting. Reston, Virigina: AIAA, 2011
    [6]
    Rodi PE. Vortex lift waverider configurations//The 50th Aerospace Science Meeting. Reston, Virigina: AIAA, 2012
    [7]
    李珺, 易怀喜, 王逗等. 基于投影法的双后掠乘波体气动性能. 航空学报, 2021, 42(9): 178-192 (Li Jun, Yi Huaixi, Wang Dou, et al. Research on aerodynamic performance of double swept waverider based on projection method. Acta Aeronautica et Astronautica Sinica, 2021, 42(9): 178-192 (in Chinese)
    [8]
    刘传振, 白鹏, 陈冰雁. 双后掠乘波体设计及性能优势分析. 航空学报, 2017, 38(6): 104-114 (Liu Chuanzhen, Bai Peng, Chen Bingyan. Design and property advantages analysis of double swept waverider. Acta Aeronautica et Astronautica Sinica, 2017, 38(6): 104-114 (in Chinese)
    [9]
    刘传振, 白鹏, 陈冰雁等. 定平面形状乘波体及设计变量影响分析. 宇航学报, 2017, 38(5): 451-458 (Liu Chuanzhen, Bai Peng, Chen Bingyan, et al. Analysis on design variables for planform-controllable waverider. Journal of Astronautics, 2017, 38(5): 451-458 (in Chinese) doi: 10.3873/j.issn.1000-1328.2017.05.002
    [10]
    Liu CZ, Bai P, Yang YJ, et al. Double swept waverider from osculating-cone method. Journal of Aerospace Engineering, 2018, 31(6): 06018004
    [11]
    Wang JF, Liu CZ, Bai P, et al. Design methodology of the waverider with a controllable planar shape. Acta Astronautica, 2018, 151(10): 504-510
    [12]
    Ueno A, Suzuki K. CFD-based shape optimization of hypersonic vehicles considering transonic aerodynamic performance//46th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada. Reston, Virigina, AIAA, 2008: 288
    [13]
    Ueno A, Suzuki K. Two-dimensional shape optimization of hypersonic vehicles considering transonic aerodynamic performance. Transactions of the Japan Society for Aeronautical and Space Sciences, 2009, 52(176): 65-73 doi: 10.2322/tjsass.52.65
    [14]
    孙祥程, 韩忠华, 柳斐等. 高超声速飞行器宽速域翼型/机翼设计与分析. 航空学报, 2018, 39(6): 31-42 (Sun Xiangcheng, Han Zhonghua, Liu Fei, et al. Design and analysis of hypersonic vehicle airfoil/wing at wide-range Mach numbers. Acta Aeronautica et Astronautica Sinica, 2018, 39(6): 31-42 (in Chinese) doi: 10.7527/S1000-6893.2018.21737
    [15]
    张阳, 韩忠华, 柳斐等. 高超声速飞行器宽速域翼型多目标优化设计研究. 气体物理, 2019, 4(4): 26-40

    Zhang Yang, Han Zhonghua, Liu Fei, et al. Multi-objective aerodynamic shape optimization of wide-mach-number-range airfoil. Physics of Gases, 2019, 4(4): 26-40 (in Chinese)
    [16]
    张阳, 韩忠华, 柳斐等. 高超声速飞行器宽速域翼型高效多目标优化设计方法研究. 航空科学技术, 2020, 31(11): 14-24 (Zhang Yang, Han Zhonghua, Liu Fei, et al. Efficient multi-objective shape optimization method of hypersonic wide-mach-number-range airfoil. Aeronautical Science & Technology, 2020, 31(11): 14-24 (in Chinese) doi: 10.19452/j.issn1007-5453.2020.11.003
    [17]
    张阳, 韩忠华, 周正等. 面向高超声速飞行器的宽速域翼型优化设计. 空气动力学学报, 2021, 39(6): 111-127 (Zhang Yang, Han Zhonghua, Zhou Zheng, et al. Aerodynamic design optimization of wide-Mach-number-range airfoils for hypersonic vehicles. Acta Aerodynamica Sinica, 2021, 39(6): 111-127 (in Chinese) doi: 10.7638/kqdlxxb-2021.0384
    [18]
    韩忠华, 许晨舟, 乔建领等. 基于代理模型的高效全局气动优化设计方法研究进展. 航空学报, 2020, 41(5): 30-70 (Han Zhonghua, Xu Chenzhou, Qiao Jianling, et al. Recent progress of efficient global aerodynamic shape optimization using surrogate-based approach. Acta Aeronautica et Astronautica Sinica, 2020, 41(5): 30-70 (in Chinese)
    [19]
    夏陈超. 基于CFD的飞行器高保真度气动外形优化设计方法. [博士论文]. 杭州: 浙江大学, 2016

    Xia Chengchao. CFD-based high-fidelity aerodynamic shape optimization design method for aircraft. [PhD Thesis]. Hangzhou: Zhejiang University, 2016 (in Chinese))
    [20]
    苗萌, 曾鹏, 阎超等. 基于替代模型的三维后体尾喷管优化设计. 空气动力学学报, 2013, 31: 641-646 (Miao Meng, Zeng Peng, Yan Chao, et al. Optimization design of 3D rear body tail nozzle based on alternative model. Acta Aerodynamica Sinica, 2013, 31: 641-646 (in Chinese) doi: 10.7638/kqdlxxb-2012.0011
    [21]
    高正红, 王超. 飞行器气动外形设计方法研究与进展. 空气动力学学报, 2017, 35: 516-528 (Gao Zhenghong, Wang Chao. Research and progress on aerodynamic shape design methods of aircraft. Acta Aerodynamica Sinica, 2017, 35: 516-528 (in Chinese) doi: 10.7638/kqdlxxb-2017.0058
    [22]
    黄江涛, 周铸, 刘刚等. 飞行器气动/结构多学科延迟耦合伴随系统数值研究. 航空学报, 2018, 39(5): 101-112 (Huang Jiang tao, Zhou Zhu, Liu Gang, et al. Numerical study of aerodynamic/structural multi-disciplinary delay coupled adjoint system for aircraft. Acta Aeronautica et Astronautica Sinica, 2018, 39(5): 101-112 (in Chinese)
    [23]
    Tincher D, Lane J. On the design of a hypersonic waverider test bed vehicle: a first step to outer planet exploration. AIAA 92-0308, 1992
    [24]
    刘超宇, 屈峰, 孙迪等. 基于离散伴随的高超声速密切锥乘波体气动优化设计, 出版中, http://kns.cnki.net/kcms/detail/11.1929.V.20220111.1647.020.html.2022-1-4

    Liu Chaoyu, Qu Feng, Sun Di, et al. Discretized adjoint based aerodynamic optimization design for the hypersonic osculating-cone waverider, in press, http://kns.cnki.net/kcms/detail/11.1929.V.20220111.1647.020.html.2022-1-4 (in Chinese))
    [25]
    Qu F, Chen JJ, Sun D, et al, A new all-speed flux scheme for the Euler equations. Computers and Mathematic with Applications, 2019, 77(4): 1216-1231
    [26]
    Chu J, Luckring JM. Experimental surface pressure data obtained on 65◦ delta wing across Reynolds number and Mach number ranges. NASA Langley Technical Report Server, 1996
    [27]
    刘传振, 孟旭飞, 刘荣健, 等. 双后掠乘波体高超声速试验与数值分析. 航空学报, 2022, 43(9): 374-385 (Liu Chuanzhen, Meng Xufei, Liu Rongjian, et al. Experimental and numerical investigation for hypersonic performance of double swept waverider. Acta Aeronautica et Astronautica Sinica, 2022, 43(9): 374-385 (in Chinese) doi: 10.7527/j.issn.1000-6893.2022.9.hkxb202209023
    [28]
    白俊强, 雷锐午, 杨体浩等. 基于伴随理论的大型客机气动优化设计研究进展. 航空学报, 2019, 40(1): 103-120 (Bai Junqiang, Lei Ruiwu, Yang Tihao, et al. Progress of adjoint based aerodynamic optimization design for large civil airceaft. Acta Aeronautica et Astronautica Sinica, 2019, 40(1): 103-120 (in Chinese)
    [29]
    Sederberg TW, Parry SR. Free-form deformation of solid geometric models. Acm Siggraph Computer Graphics, 1986, 20(4): 151-160 doi: 10.1145/15886.15903
    [30]
    Samareh JA. Aerodynamic shape optimization based on free-form deformation//10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, American Institute of Aeronautics and Astronautics, 2004
    [31]
    Hunt J, Wray AA, Moin P. Eddies, streams, and convergence zones in turbulent flows. Studying Turbulence Using Numerical Simulation Databases 2, 1988
    [32]
    Marcel L, Olivier M, Pierre C. Large-eddy simulation of turbulence. SIAM Review, 2007, 49(2): 340-342
  • Related Articles

    [1]Liu Wen, Guo Shuaiqi, Liu Yang, Wang Famin, Zhang Chen'an. ADVANCES IN DESIGN AND OPTIMIZATION OF WAVERIDER —— FROM HYPERSONIC TO WIDE-SPEED RANGE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(6): 1655-1677. DOI: 10.6052/0459-1879-23-589
    [2]Guo Shuaiqi, Liu Wen, Zhang Chen’an, Wang Famin. DESIGN AND OPTIMIZATION FOR HYPERSONIC CONE-DERIVED WAVERIDER WITH BLUNTED LEADING-EDGE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(5): 1414-1428. DOI: 10.6052/0459-1879-21-611
    [3]Cui Kai, Xu Yingzhou, Xiao Yao, Li Guangli. EFFECT OF COMPRESSION SURFACE DEFORMATION ON AERODYNAMIC PERFORMANCES OF WAVERIDERS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(1): 75-83. DOI: 10.6052/0459-1879-16-041
    [4]Feng Li Zhengyin Ye Chao Gao. Aerodynamic optimization design of new type tandem airship based on response surface methodology[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(6): 1068-1076. DOI: 10.6052/0459-1879-2011-6-lxxb2011-053
    [5]Jun Yan, Ling Liu, Xiaofeng Liu, Jiadong Deng. Concurrent hierarchical optimization for structures composed of modules considering size effects[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(2): 268-274. DOI: 10.6052/0459-1879-2010-2-2008-694
    [6]Fengtao Zhang, Kai Cui, Guowei Yang, Yuanyuan Cui. Optimization design of waverider based on the artificial neural networks[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(3): 418-424. DOI: 10.6052/0459-1879-2009-3-2008-422
    [7]Shiping Sun, Weihong Zhang, Kepeng Qiu, Zhongze Guo, Bassir Hicham. Integrated topology optimization and scale effect analysis of cyclic symmetry sandwich structures[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(6): 788-795. DOI: 10.6052/0459-1879-2007-6-2006-518
    [8]Weihong Zhang, Gaoming Dai, Fengwen Wang, Shiping Sun, Hicham Bassir. Topology optimization of material microstructures using strain energy-based prediction of effective elastic properties[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(1): 77-89. DOI: 10.6052/0459-1879-2007-1-2006-086
    [9]Optimized design of waverider with high lift over drag ratio[J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(4): 540-546. DOI: 10.6052/0459-1879-2006-4-2005-021
    [10]NUMERICAL STUDY ON THE INTERACTION BETWEEN A SHOCK WAVE AND A VORTEX[J]. Chinese Journal of Theoretical and Applied Mechanics, 1993, 25(3): 257-263. DOI: 10.6052/0459-1879-1993-3-1995-641
  • Cited by

    Periodical cited type(4)

    1. 陈树生,冯聪,张兆康,赵轲,张新洋,高正红. 基于全局/梯度优化方法的宽速域乘波-机翼布局气动设计. 航空学报. 2024(06): 140-154 .
    2. 张阳,韩忠华,张科施,宋科,宋文萍. 高超声速飞行器宽速域气动布局设计与优化研究进展. 空天技术. 2024(02): 1-14 .
    3. 刘文,郭帅旗,刘洋,王发民,张陈安. 乘波体设计与优化研究进展——从高超声速至宽速域. 力学学报. 2024(06): 1655-1677 . 本站查看
    4. Tianyu Gong,Yaosong Long,Zhongtao Cheng,Yiqing Li. Recent development of integrated design and improving methods of waverider and inlet. Advances in Aerodynamics. 2024(04): 5-28 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (1244) PDF downloads (220) Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return