Citation: | Zhang Shengting, Li Jing, Chen Zhangxing, Zhang Tao, Wu Keliu, Feng Dong, Bi Jianfei, Zhu Shang. Simulation of dynamic wetting effect during gas-liquid spontaneous imbibition based on modified LBM. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(2): 355-368. DOI: 10.6052/0459-1879-22-409 |
[1] |
蔡建超, 郁伯铭. 多孔介质自发渗吸研究进展. 力学进展, 2012, 42(6): 735-754 (Cai Jianchao, Yu Boming. Advances in studies of spontaneous imbibition in porous media. Advances in Mechanics, 2012, 42(6): 735-754 (in Chinese) doi: 10.6052/1000-0992-11-096
|
[2] |
Cai JC, Jin TX, Kou JS, et al. Lucas-Washburn equation-based modeling of capillary-driven flow in porous systems. Langmuir, 2021, 37(5): 1623-1636 doi: 10.1021/acs.langmuir.0c03134
|
[3] |
唐洪明, 朱柏宇, 王茜等. 致密砂岩气层水锁机理及控制因素研究. 中国科学:技术科学, 2018, 4848(5): 537-547 (Tang Hongming, Zhu Baiyu, Wang Xi, et al. Mechanism and control factors of water blocking in tight sandstone gas reservoir. Scientia Sinica:Technologica, 2018, 4848(5): 537-547 (in Chinese)
|
[4] |
申颍浩, 葛洪魁, 宿帅等. 页岩气储层的渗吸动力学特性与水锁解除潜力. 中国科学: 物理学, 力学, 天文学, 2017, 47(11): 84-94 (Shen Yinghao, Ge Hongkui, Su Shuai, et al. Imbibition characteristic of shale gas formation and water-block removal capability. Scientia Sinica:Physica,Mechanica &Astronomica, 2017, 47(11): 84-94 (in Chinese)
|
[5] |
宋付权, 张翔, 黄小荷等. 纳米尺度下页岩基质中的页岩气渗流及渗吸特征. 中国科学: 技术科学, 2016, 46(2): 120-126 (Song Fuquan, Zhang Xiang, Huang Xiaohe, et al. The flow characteristics of shale gas through shale rock matrix in nano-scale and water imbibition on shale sheets. Scientia Sinica: Technologica, 2016, 46(2): 120-126 (in Chinese) doi: 10.1360/N092016-00011
|
[6] |
Zhang ZE, Cai JC, Chen F, et al. Progress in enhancement of CO2 absorption by nanofluids: A mini review of mechanisms and current status. Renewable Energy, 2018, 118: 527-535 doi: 10.1016/j.renene.2017.11.031
|
[7] |
袁士义, 马德胜, 李军诗等. 二氧化碳捕集、驱油与埋存产业化进展及前景展望. 石油勘探与开发, 2022, 49(4): 1-7 (Yuan Shiyi, Ma Desheng, Li Junshi, et al. Progress and prospects of carbon dioxide capture, EOR-utilization and storage industrialization. Petroleum Exploration and Development, 2022, 49(4): 1-7 (in Chinese) doi: 10.11698/PED.20220212
|
[8] |
朱思南, 孙军昌, 魏国齐等. 水侵气藏型储气库注采相渗滞后数值模拟修正方法. 石油勘探与开发, 2021, 48(1): 166-174 (Zhu Sinan, Sun Junchang, Wei Guoqi, et al. Numerical simulation-based correction of relative permeability hysteresis in water-invaded underground gas storage during multi-cycle injection and production. Petroleum Exploration and Development, 2021, 48(1): 166-174 (in Chinese) doi: 10.11698/PED.2021.01.15
|
[9] |
Lucas R. Ueber das Zeitgesetz des kapillaren Aufstiegs von Flüssigkeiten. Kolloid-Zeitschrift, 1918, 23(1): 15-22 doi: 10.1007/BF01461107
|
[10] |
Washburn EW. The dynamics of capillary flow. Physical Review, 1921, 17(3): 273-283 doi: 10.1103/PhysRev.17.273
|
[11] |
杨敏, 曹炳阳. 微纳通道中牛顿流体毛细流动的研究进展. 科学通报, 2016, 61(14): 1574-1584 (Yang Min, Cao Bingyang. Advances of capillary filling of Newtonian fluids in micro- and nanochannels. Chinese Science Bulletin, 2016, 61(14): 1574-1584 (in Chinese) doi: 10.1360/N972015-00783
|
[12] |
杨敏, 曹炳阳, 杨纯等. 纳米通道中毛细流动的实验研究. 工程热物理学报, 2019, 40(9): 2151-2155 (Yang Min, Cao Bingyang, Yang Chun, et al. Experimental study on the capillary filling in nanochannels. Journal of Engineering Thermophysics, 2019, 40(9): 2151-2155 (in Chinese)
|
[13] |
Ding HY, Song FQ, Hu X, et al. Investigation of non-Newtonian characteristics of water flow in micro-/nanochannels and tight reservoirs. Geofluids, 2022, 2022: 1523287
|
[14] |
Wang Y, Song FQ, Zhu WY, et al. Flow characteristics of silicon oil in nanochannels. Journal of Hydrodynamics, 2021, 33(6): 1282-1290 doi: 10.1007/s42241-021-0102-0
|
[15] |
Hamraoui A, Thuresson K, Nylander T, et al. Can a dynamic contact angle be understood in terms of a friction coefficient? Journal of Colloid and Interface Science, 2000, 226(2): 199-204 doi: 10.1006/jcis.2000.6830
|
[16] |
Heshmati M, Piri M. Experimental investigation of dynamic contact angle and capillary rise in tubes with circular and noncircular cross sections. Langmuir, 2014, 30(47): 14151-14162 doi: 10.1021/la501724y
|
[17] |
Tian WB, Wu KL, Chen ZX, et al. Mathematical model of dynamic imbibition in nanoporous reservoirs. Petroleum Exploration and Development, 2022, 49(1): 170-178 doi: 10.1016/S1876-3804(22)60013-2
|
[18] |
Siebold A, Nardin M, Schultz J, et al. Effect of dynamic contact angle on capillary rise phenomena. Colloids and Surfaces A: PhysicoChemical and Engineering Aspects, 2000, 161(1): 81-87
|
[19] |
Kim H, Lim JH, Lee K, et al. Direct measurement of contact angle change in capillary rise. Langmuir, 2020, 36(48): 14597-14606 doi: 10.1021/acs.langmuir.0c02372
|
[20] |
Blake TD, Haynes JM. Kinetics of liquid-liquid displacement. Journal of Colloid and Interface Science, 1969, 30(3): 421-423 doi: 10.1016/0021-9797(69)90411-1
|
[21] |
Tian WB, Wu KL, Chen ZX, et al. Dynamic wetting of solid-liquid-liquid system by molecular kinetic theory. Journal of Colloid and Interface Science, 2020, 579: 470-478 doi: 10.1016/j.jcis.2020.06.101
|
[22] |
Tian WB, Wu KL, Chen ZX, et al. Effect of dynamic contact angle on spontaneous capillary-liquid-liquid imbibition by molecular kinetic theory. SPE Journal, 2021, 26(04): 2324-2339 doi: 10.2118/205490-PA
|
[23] |
李庆, 余悦, 唐诗. 多相格子Boltzmann方法及其在相变传热中的应用. 科学通报, 2020, 65(17): 1677-1693 (Li Qing, Yu Yue, Tang Shi. Multiphase lattice Boltzmann method and its applications in phase-change heat transfer. Chinese Science Bulletin, 2020, 65(17): 1677-1693 (in Chinese) doi: 10.1360/TB-2019-0769
|
[24] |
白冰, 张涛, 李汉卿等. 基于不可压LBM的汽液两相流数值研究. 工程热物理学报, 2020, 41(8): 1952-1959 (Bai Bing, Zhang Tao, Li Hanqing, et al. A Simulated Study on Liquid-gas Flow Based on Incompressible LBM Model. Journal of Engineering Thermophysics, 2020, 41(8): 1952-1959 (in Chinese)
|
[25] |
Moradi B, Ghasemi S, Hosseini Moghadam A, et al. Dynamic behavior investigation of capillary rising at various dominant forces using free energy lattice Boltzmann method. Meccanica, 2021, 56(12): 2961-2977 doi: 10.1007/s11012-021-01426-z
|
[26] |
Raiskinmäki P, Shakib-Manesh A, Jäsberg A, et al. Lattice-Boltzmann simulation of capillary rise dynamics. Journal of Statistical Physics, 2002, 107(1): 143-158
|
[27] |
Wolf FG, Dos Santos LOE, Philippi PC. Capillary rise between parallel plates under dynamic conditions. Journal of Colloid and Interface Science, 2010, 344(1): 171-179 doi: 10.1016/j.jcis.2009.12.023
|
[28] |
Lu G, Wang XD, Duan YY. Study on initial stage of capillary rise dynamics. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 433: 95-103
|
[29] |
Wang DD, Liu PJ, Wang JX, et al. Direct numerical simulation of capillary rise in microtubes with different cross-sections. Acta Physica Polonica, A, 2019, 135(3): 532-538
|
[30] |
Chen L, Kang QJ, Mu YT, et al. A critical review of the pseudopotential multiphase lattice Boltzmann model: Methods and applications. International Journal of Heat and Mass Transfer, 2014, 76: 210-236 doi: 10.1016/j.ijheatmasstransfer.2014.04.032
|
[31] |
Cavaccini G, Pianese V, Jannelli A, et al. One-dimensional mathematical and numerical modeling of liquid dynamics in a horizontal capillary. Journal of Computational Methods in Sciences and Engineering, 2009, 9(1-2): 3-16 doi: 10.3233/JCM-2009-0252
|
[32] |
Kolliopoulos P, Jochem KS, Lade Jr RK, et al. Capillary flow with evaporation in open rectangular microchannels. Langmuir, 2019, 35(24): 8131-8143 doi: 10.1021/acs.langmuir.9b00226
|
[33] |
Ouali FF, McHale G, Javed H, et al. Wetting considerations in capillary rise and imbibition in closed square tubes and open rectangular cross-section channels. Microfluidics and Nanofluidics, 2013, 15(3): 309-326 doi: 10.1007/s10404-013-1145-5
|
[34] |
Li Q, Luo KH, Kang QJ, et al. Lattice Boltzmann methods for multiphase flow and phase-change heat transfer. Progress in Energy and Combustion Science, 2016, 52: 62-105 doi: 10.1016/j.pecs.2015.10.001
|
[35] |
Shan XW, Chen HD. Lattice Boltzmann model for simulating flows with multiple phases and components. Physical Review E, 1993, 47(3): 1815 doi: 10.1103/PhysRevE.47.1815
|
[36] |
Yuan P, Schaefer L. Equations of state in a lattice Boltzmann model. Physics of Fluids, 2006, 18(4): 042101 doi: 10.1063/1.2187070
|
[37] |
Gong S, Cheng P. Numerical investigation of droplet motion and coalescence by an improved lattice Boltzmann model for phase transitions and multiphase flows. Computers & Fluids, 2012, 53: 93-104
|
[38] |
Mukherjee A, Basu DN, Mondal PK. Algorithmic augmentation in the pseudopotential-based lattice Boltzmann method for simulating the pool boiling phenomenon with high-density ratio. Physical Review E, 2021, 103(5): 053302 doi: 10.1103/PhysRevE.103.053302
|
[39] |
张晟庭, 李靖, 陈掌星等. 气液非混相驱替过程中的卡断机理及模拟研究. 力学学报, 2022, 54(5): 1429-1442 (Zhang Shengting, Li Jing, Chen Zhangxing, et al. Study on snap-off mechanism and simulation during gas-liquid immiscible displacement. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(5): 1429-1442 (in Chinese)
|
[40] |
Li Q, Luo KH, Kang QJ, et al. Contact angles in the pseudopotential lattice Boltzmann modeling of wetting. Physical Review E, 2014, 90(5): 053301 doi: 10.1103/PhysRevE.90.053301
|
[41] |
Kupershtokh AL, Medvedev DA, Karpov DI. On equations of state in a lattice Boltzmann method. Computers & Mathematics with Applications, 2009, 58(5): 965-974
|
[42] |
Huang JW, Yin XL, Killough J. Thermodynamic consistency of a pseudopotential lattice Boltzmann fluid with interface curvature. Physical Review E, 2019, 100(5): 053304 doi: 10.1103/PhysRevE.100.053304
|
[43] |
Huang HB, Krafczyk M, Lu XY. Forcing term in single-phase and Shan-Chen-type multiphase lattice Boltzmann models. Physical Review E, 2011, 84(4): 046710 doi: 10.1103/PhysRevE.84.046710
|
[44] |
Wen BH, Huang BF, Qin ZR, et al. Contact angle measurement in lattice Boltzmann method. Computers & Mathematics with Applications, 2018, 76(7): 1686-1698
|
[45] |
Stroberg W, Keten S, Liu WK. Hydrodynamics of capillary imbibition under nanoconfinement. Langmuir, 2012, 28(40): 14488-14495 doi: 10.1021/la302292w
|
[46] |
Ruiz-Gutiérrez É, Armstrong S, Lévêque S, et al. The long cross-over dynamics of capillary imbibition. Journal of Fluid Mechanics, 2022, 939: A39
|
[47] |
Berthier J, Gosselin D, Delapierre G. Spontaneous capillary flow: should a dynamic contact angle be taken into account? Sensors & Transducers, 2015, 191(8): 40
|
[1] | Wang Yueming, Sun Yuanxiang, Wang Cheng. THE INFLUENCE OF COMPRESSIBILITY ON RT INSTABILITY OF BUBBLE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(12): 3418-3429. DOI: 10.6052/0459-1879-24-367 |
[2] | Wang Tian, Sun Dong, Guo Qilong, Li Chen, Yuan Xianxu, Li Bo. INLET SYNTHETIC TURBULENCE GENERATION METHOD FOR COMPRESSIBLE BOUNDARY LAYER[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(1): 45-57. DOI: 10.6052/0459-1879-23-216 |
[3] | Wang Changchang, Wang Guoyu, Huang Biao. NUMERICAL SIMULATION OF SHOCK WAVE DYNAMICS IN TRANSIENT TURBULENT CAVITATING FLOWS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(5): 990-1002. DOI: 10.6052/0459-1879-18-215 |
[4] | Wang Jiefang, An Hai, An Weiguang. THE NONLINEAR DYNAMIC BUCKLING ANALYSIS OF A THIN-WALLED CYLINDRICAL SHELL OF SUPERCAVITATING VEHICLES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(1): 181-191. DOI: 10.6052/0459-1879-15-222 |
[5] | Lü Ming, Ning Zhi, Yan Kai, Fu Juan, Song Yunchao, Sun Chunhua. STUDY ON THE STABILITY OF LIQUID JET IN COAXIAL SWIRLING COMPRESSIBLE FLOW UNDER SUPERCAVITATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(3): 323-330. DOI: 10.6052/0459-1879-12-223 |
[6] | Yang Wugang, Wen Kaige, Li Sancai, Zhang Yuwen, . DETERMINATION OF ENTRAINMENT RATE FOR SUPERCAVITATION VEHICLE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, (4): 694-700. DOI: 10.6052/0459-1879-11-320 |
[7] | Zhiyong Ai, Chao Wu. Plane strain consolidation of a multi-layered soil with anisotrpic permeability and compressible constituents[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(5): 801-807. DOI: 10.6052/0459-1879-2009-5-2008-477 |
[8] | Xiangbin Li, Guoyu Wang, Mindi Zhang, Shuyan Liu. Characteristics of supercavitating flows around a hydrofoil[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(3): 315-322. DOI: 10.6052/0459-1879-2008-3-2006-568 |
[10] | ON THE DISPUTE WITH REGARD TO VISCOUS LINEAR STABILITY OF COMPRESSIBLE BOUNDARY LAYER FLOW OVER FLAT PLATE[J]. Chinese Journal of Theoretical and Applied Mechanics, 1997, 29(1): 24-29. DOI: 10.6052/0459-1879-1997-1-1995-192 |
1. |
张永超,丁丽林,赵帅,王坚石,陈庆光. 干扰装置对热电偶套管绕流及减阻性能研究. 山东科技大学学报(自然科学版). 2022(02): 108-116 .
![]() | |
2. |
张华,杨明慧. 可压缩黏性圆射流稳定性分析. 计算物理. 2022(05): 529-536 .
![]() | |
3. |
霍元平,王军锋,左子文,刘海龙. 滴状模式下液桥形成及断裂的电流体动力学特性研究. 力学学报. 2019(02): 425-431 .
![]() |