Citation: | Han Fang, Wang Qingyun. Research advances and some thoughts on neurodynamics. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(4): 805-813. DOI: 10.6052/0459-1879-22-404 |
[1] |
Freeman WJ. Mesoscopic neurodynamics: From neuron to brain. Journal of Physiology-Paris, 2000, 94(5-6): 303-322 doi: 10.1016/S0928-4257(00)01090-1
|
[2] |
Hodgkin AL, Huxley AF. A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology, 1952, 117(4): 500-544 doi: 10.1113/jphysiol.1952.sp004764
|
[3] |
Fitzhugh R. Mathematical models of threshold phenomena in the nerve membrane. Bulletin of Mathematical Biology, 1955, 17(4): 257-278
|
[4] |
Hindmarsh JL, Rose RM. A model of neuronal bursting using three coupled first order differential equations. Proceedings of the Royal Society B: Biological Sciences, 1984, 221(1222): 87-102
|
[5] |
Morris C, Lecar H. Voltage oscillations in the barnacle giant muscle fiber. Biophysical Journal, 1981, 35(1): 193-213 doi: 10.1016/S0006-3495(81)84782-0
|
[6] |
Chay TR. Chaos in a three-variable model of an excitable cell. Physica D: Nonlinear Phenomena, 1985, 16(2): 233-242 doi: 10.1016/0167-2789(85)90060-0
|
[7] |
Izhikevich EM. Simple model of spiking neurons. IEEE Transactions on Neural Networks, 2015, 14: 1569-1572
|
[8] |
Lapicque, L. Recherches quantitatives sur l’excitation ´electrique des nerfs trait´ee comme une polarisation. J. Physiol. Pathol. Gen., 1907, 9: 620-635
|
[9] |
Rinzel J. Bursting oscillations in an excitable membrane model. Springer Berlin Heidelberg, 1985, 47(3): 357-366
|
[10] |
Izhikevich EM. Neural excitability, spiking and bursting. International Journal of Bifurcation and Chaos, 2012, 10(6): 1171-1266
|
[11] |
王青云, 陆启韶. 兴奋性化学突触耦合的神经元的同步. 动力学与控制学报, 2020, 18(1): 1-5 (Wang Rubin. Research advances in neurodynamics. Journal of Dynamics and Control, 2020, 18(1): 1-5 (in Chinese) doi: 10.6052/1672-6553-2020-013
|
[12] |
王海侠, 陆启韶, 郑艳红. 神经元模型的复杂动力学: 分岔与编码. 动力学与控制学报, 2009, 7(4): 293-296 (Wang Haixia, Lu Qishao, Zheng Yanhong. Complex dynamics of the neuronal model: bifurcation and encoding. Journal of Dynamics and Control, 2009, 7(4): 293-296 (in Chinese)
|
[13] |
Canavier CC. Reciprocal excitatory synapses convert pacemaker-like Firing into burst firing in a simple model of coupled neurons. Neurocomputing, 2000, 32: 331-338
|
[14] |
Booth V, Bose A. Transitions between different synchronous firing modes using synaptic depression. Neurocomputing, 2002, 44: 61-67
|
[15] |
Casado JM. Synchronization of two Hodgkin–Huxley neurons due to internal noise. Physics Letters A, 2003, 310(5-6): 400-406 doi: 10.1016/S0375-9601(03)00387-6
|
[16] |
Wang Q, Perc M, Duan Z, et al. Synchronization transitions on scale-free neuronal networks due to finite information transmission delays. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2009, 80(2): 026206
|
[17] |
Wang Q, Duan Z, Perc M, et al. Synchronization transitions on small-world neuronal networks: Effects of information transmission delay and rewiring probability. Europhysics Letters, 2008, 83(5): 50008 doi: 10.1209/0295-5075/83/50008
|
[18] |
Wu J, Ma S. Coherence resonance of the spiking regularity in a neuron under electromagnetic radiation. Nonlinear Dynamics, 2019, 96: 1895-1908 doi: 10.1007/s11071-019-04892-z
|
[19] |
Lü M, Ma J. Multiple modes of electrical activities in a new neuron model under electromagnetic radiation. Neurocomputing, 2016, 205: 375-381
|
[20] |
Dayan P, Abbott LF. Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems. The MIT Press, 2001
|
[21] |
Abbott LF. Theoretical neuroscience rising. Neuron, 2008, 60(3): 489-495 doi: 10.1016/j.neuron.2008.10.019
|
[22] |
Olshausen BA, Field DJ. Sparse coding of sensory inputs. Current Opinion in Neurobiology, 2004, 14(4): 481-487 doi: 10.1016/j.conb.2004.07.007
|
[23] |
Chaudhuri R, Fiete I. Computational principles of memory. Nature Neuroscience, 2016, 19(3): 394-403
|
[24] |
Wang XJ. Decision making in recurrent neuronal circuits. Neuron, 2008, 60(2): 215-234 doi: 10.1016/j.neuron.2008.09.034
|
[25] |
Diedrichsen J, Shadmehr R, Ivry RB. The coordination of movement:optimal feedback control and beyond. Trends in Cognitive Sciences, 2010, 14(1): 31-39
|
[26] |
Beck C, Neumann H. Interactions of motion and form in visual cortex-A neural model. J. Physiol. Paris, 2010, 104(1-2): 61-70 doi: 10.1016/j.jphysparis.2009.11.005
|
[27] |
Pinotsis DA, Schwarzkopf DS, Litvak V, et al. Dynamic causal modelling of lateral interactions in the visual cortex. NeuroImage, 2012, 66: 563-576
|
[28] |
Guzman SJ. Synaptic mechanisms of pattern completion in the hippocampal CA3 network. Science, 2016, 353(6304): 1117-1123
|
[29] |
宋健, 刘深泉, 臧杰. 基于基底神经节机理的行为决策模型. 动力学与控制学报, 2020, 18(6): 1-31 (Song Jian, Liu Shenquan, Zang Jie. Behavior decision-making model based on basal ganglia mechanism. Journal of Dynamics and Control, 2020, 18(6): 1-31 (in Chinese) doi: 10.1126/science.aaf1836
|
[30] |
Humphries MD, Stewart RD, Gurney KN. A physiologically plausible model of action selection and oscillatory activity in the basal ganglia. The Journal of Neuroscience, 2006, 26(50): 12921-12942 doi: 10.1523/JNEUROSCI.3486-06.2006
|
[31] |
Gurney K, Prescott TJ, Redgrave P. A computational model of action selection in the basal ganglia. I: A new functional anatomy. Biological Cybernetics, 2001, 84(6): 401-410
|
[32] |
Dura-Bernal S, Zhou X, Neymotin SA, et al. Cortical spiking network interfaced with virtual musculoskeletal arm and robotic arm. Frontiers in Neurorobotics, 2015, 9: 13
|
[33] |
Taegyo K, Hamade KC, Dmitry T, et al. Reward based motor adaptation mediated by basal ganglia. Frontiers in Computational Neuroscience, 2017, 11: 19
|
[34] |
Todorov DI, Capps RA, Barnett WH, et al. The interplay between cerebellum and basal ganglia in motor adaptation: A modeling study. PLoS ONE, 2019, 14(4): e0214926 doi: 10.1371/journal.pone.0214926
|
[35] |
Rabinovich MI, Muezzinoglu MK. Nonlinear dynamics of the brain: emotion and cognition. Physics-Uspekhi, 2010, 53(4): 357-372 doi: 10.3367/UFNe.0180.201004b.0371
|
[36] |
Kriegeskorte N. Deep neural networks: A new framework for modeling biological vision and brain information processing. Annual Review of Vision Science, 2015, 1(1): 417
|
[37] |
王如彬, 王毅泓, 徐旭颖等. 认知神经科学中蕴藏的力学思想与应用. 力学进展, 2020, 50(1): 450-505 (Wang Rubin, Wang Yihong, Xu Xuying, et al. Mechanical thoughtsand applications in cognitive neuroscience. Advances in Mechanics, 2020, 50(1): 450-505 (in Chinese) doi: 10.1146/annurev-vision-082114-035447
|
[38] |
彭俊, 王如彬, 王毅泓. 大脑血液动力学现象中的能量编码. 力学学报, 2019, 51(4): 1202-1209 (Peng Jun, Wang Rubin, Wang Yihong. Energy coding of hemodynamic phenomena in the brain. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1202-1209 (in Chinese)
|
[39] |
Wendling F, Bartolomei F, Bellanger JJ, et al. Epileptic fast activity can be explained by a model of impaired GABAergic dendritic inhibition. European Journal of Neuroscience, 2002, 15: 1499-1508 doi: 10.1046/j.1460-9568.2002.01985.x
|
[40] |
Taylor PN, Baier G. A spatially extended model for macroscopic spike-wave-discharges. Journal of Computational Neuroscience, 2011, 31(3): 679-684
|
[41] |
韩芳, 樊登贵, 张丽媛等. 神经系统疾病与认知动力学(Ⅰ): 癫痫发作的动力学与控制. 力学进展, 2022, 52(2): 339-396 (Han Fang, Fan Denggui, Zhang Liyuan, et al. Neurological disease and cognitive dynamics (I): Dynamics and control of epileptic seizures. Advances in Mechanics, 2022, 52(2): 339-396 (in Chinese) doi: 10.1007/s10827-011-0332-1
|
[42] |
Fan D, Wang Q, Matjaz P. Disinhibition-induced transitions between absence and tonic-clonic epileptic seizures. Scientific Reports, 2015, 5: 12618 doi: 10.1038/srep12618
|
[43] |
Wang Z, Wang Q. Eliminating absence seizures through the deep brain stimulation to thalamus reticular nucleus. Frontiers in Computational Neuroscience, 2017, 11: 22
|
[44] |
Zhang L, Wang Q, Baier G. Spontaneous transitions to focal-onset epileptic seizures: A dynamical study. Chaos, 2020, 30(10): 103114 doi: 10.1063/5.0021693
|
[45] |
Fan D, Liu S, Wang Q. Stimulus-induced epileptic spike-wave discharges in thalamocortical model with disinhibition. Scientific Reports, 2016, 6: 37703 doi: 10.1038/srep37703
|
[46] |
Yang C, Luan G, Liu Z, et al. Dynamical analysis of epileptic characteristics based on recurrence quantification of SEEG recordings. Physica A, 2019, 523: 507-515 doi: 10.1016/j.physa.2019.02.017
|
[47] |
Terman D, Rubin JE, Yew AC, et al. Activity patterns in a model for the subthalamopallidal network of the basal ganglia. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 2002, 22(7): 2963-2976 doi: 10.1523/JNEUROSCI.22-07-02963.2002
|
[48] |
Tass PA. Stochastic phase resetting of two coupled phase oscillators stimulated at different times. Physical Review E, 2003, 67(5): 05190
|
[49] |
Popovych OV, Tass PA. Multisite delayed feedback for electrical brain stimulation. Frontiers in Physiology, 2018, 9: 46 doi: 10.3389/fphys.2018.00046
|
[50] |
Yu Y, Hao Y, Wang Q. Model-based optimized phase-deviation deep brain stimulation for Parkinson's disease. Neural Networks, 2019, 122: 308-319
|
[51] |
Fan D, Wang Z, Wang Q. Optimal control of directional deep brain stimulation in the parkinsonian neuronal network. Communications in Nonlinear Science and Numerical Simulation, 2016, 36: 219-237 doi: 10.1016/j.cnsns.2015.12.005
|
[52] |
Fan D, Wang Q. Improving desynchronization of parkinsonian neuronal network via triplet-structure coordinated reset stimulation. Journal of Theoretical Biology, 2015, 370: 157-170 doi: 10.1016/j.jtbi.2015.01.040
|
[53] |
Zetterberg LH, Kristiansson L, Mossberg K. Performance of a model for a local neuron population. Biol. Cybern., 1978, 31(1): 15-26
|
[54] |
Traub RD, Knowles WD, Miles R, et al. Models of the cellular mechanism underlying propagation of epileptiform activity in the CA2-CA3 region of the hippocampal slice. Neuroscience, 1987, 21(2): 457-470 doi: 10.1016/0306-4522(87)90135-7
|
[55] |
Lytton WW, Sejnowski TJ. Computer model of ethosuximide's effect on a thalamic neuron. Ann. Neurol., 1992, 32(2): 131-139
|
[56] |
Destexhe A. Can GABAA conductances explain the fast oscillation frequency of absence seizures in rodents? European JournaL of Neuroscience, 1999, 11(6): 2175-2181
|
[57] |
Robinson PA, Rennie CJ, Rowe DL, et al. Neurophysical modeling of brain dynamics. Neuropsychopharmacology. 2003, Suppl. 1: S74-9
|
[58] |
Zhang L, Fan D, Wang Q. Transition dynamics of a dentate Gyrus-CA3 neuronal network during temporal lobe epilepsy. Frontiers in Computational Neuroscience, 2017, 11: 61 doi: 10.3389/fncom.2017.00061
|
[59] |
Albada S, Robinson PA. Mean-field modeling of the basal ganglia-thalamocortical system. I: Firing rates in healthy and parkinsonian states. Journal of Theoretical Biology, 2009, 257(4): 642-66361
|
[60] |
So RQ, Kent AR, Grill WM. Relative contributions of local cell and passing fiber activation and silencing to changes in thalamic fidelity during deep brain stimulation and lesioning: a computational modeling study. Journal of Computational Neuroscience, 2012, 32(3): 499-519
|
[61] |
Kerr CC, van Albada SJ, Neymotin SA, et al. Cortical information flow in Parkinson’s disease: A composite network/field model. Frontiers in Computational Neuroscience, 2013, 7(39): 1-14
|
[62] |
Yu Y, Wang Q. Oscillation dynamics in an extended model of thalamic-basal ganglia. Nonlinear Dynamics, 2019, 98: 1065-1080 doi: 10.1007/s11071-019-05249-2
|
[63] |
Yu Y, Han F, Wang Q. Exploring phase-amplitude coupling from primary motor cortex-basal ganglia-thalamus network model. Neural Networks. 2022, 153: 130-141
|
[1] | Yin Yuntong, Ma Jian, Bai Zhentao, Lu Wei, Mao Xiaofei, Ni Na, Li Dongbo. INTELLIGENT PREDICTION OF ANCHORAGE FORCE FOR EARTHEN ANCIENT HERITAGE SITES BASED ON IMPROVED PSO-BP NEURAL NETWORK[J]. Chinese Journal of Theoretical and Applied Mechanics, 2025, 57(4): 867-882. DOI: 10.6052/0459-1879-24-553 |
[2] | Dong Jinhao, Dong Jinyang, Tang Huaiping. PREDICTION OF PRESSURE DISTRIBUTION ON GURNEY FLAPS BASED ON POD-NEURAL NETWORK MODEL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2025, 57(4): 829-842. DOI: 10.6052/0459-1879-25-110 |
[3] | Li Daolun, Shen Luhang, Zha Wenshu, Xing Yan, Lyu Shuaijun, Wang Huan, Li Xiang, Hao Yuxiang, Chen Dongsheng, Chen Enyuan. NEW PROGRESS IN INTELLIGENT SOLUTION OF NEURAL OPERATORS AND PHYSICS-INFORMED-BASED METHODS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(4): 875-889. DOI: 10.6052/0459-1879-23-407 |
[4] | Xi Ziyan, Dai Yuting, Huang Guangjing, Yang Chao. AIRFOIL STALL FLUTTER PREDICTION BASED ON DEEPONET[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(3): 626-634. DOI: 10.6052/0459-1879-23-522 |
[5] | Feng Tangsijie, Liang Wei. THE BUCKLING ANALYSIS OF THIN-WALLED STRUCTURES BASED ON PHYSICS-INFORMED NEURAL NETWORKS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(11): 2539-2553. DOI: 10.6052/0459-1879-23-277 |
[6] | Yu Shenghao, Yuan Jisen, Gao Liangjie, Qian Zhansen, Li Chunxuan. eN-NEURAL NETWORK MODEL FOR PREDICTING TRANSITION OF 3-D SUPERSONIC SWEPT WING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(6): 1236-1246. DOI: 10.6052/0459-1879-23-029 |
[7] | Fang Peijun, Cai Yingfeng, Chen Long, Sun Xiaoqiang, Wang Hai. NEURAL NETWORK LATERAL DYNAMICS MODELING AND CONTROL BASED ON ED-LSTM FOR INTELLIGENT VEHICLE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(7): 1896-1908. DOI: 10.6052/0459-1879-21-667 |
[8] | Zha Wenshu, Li Daolun, Shen Luhang, Zhang Wen, Liu Xuliang. REVIEW OF NEURAL NETWORK-BASED METHODS FOR SOLVING PARTIAL DIFFERENTIAL EQUATIONS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(3): 543-556. DOI: 10.6052/0459-1879-21-617 |
[9] | Nie Shaojun, Wang Yue, Wang Yunpeng, Zhao Min, Sui Jing. APPLICATION OF RECURRENT NEURAL NETWORK IN RESEARCH OF INTELLIGENT WIND TUNNEL BALANCE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(8): 2336-2344. DOI: 10.6052/0459-1879-21-168 |
[10] | BIFURCATION THEORY METHODS IN THE DESIGN OF ANALOG NEURAL NETWORKS[J]. Chinese Journal of Theoretical and Applied Mechanics, 1994, 26(3): 312-319. DOI: 10.6052/0459-1879-1994-3-1995-551 |