Citation: | Wang Zhiqiang, Cai Lixun, Huang Maobo. Full solution for characterizing stress fields near the tip of mode-I crack under plane and power-law plastic conditions. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(1): 95-112. DOI: 10.6052/0459-1879-22-360 |
[1] |
Cherepanov GP. The propagation of cracks in a continuous medium. J Appl Math Mech, 1967, 31(3): 503-512 doi: 10.1016/0021-8928(67)90034-2
|
[2] |
Rice JR. A path independent integral and the approximate analysis of concentration by notches and cracks. Int J Appl Mech, 1968, 35: 379-386 doi: 10.1115/1.3601206
|
[3] |
Hutchinson JW. Singular behavior at the end of a tensile crack in a hardening material. J Mech Phys Solids, 1968, 16: 13-31 doi: 10.1016/0022-5096(68)90014-8
|
[4] |
Rice JR, Rosengren GF. Plane strain deformation near a crack tip in a power-law hardening material. J Mech Phys Solids, 1968, 16: 1-12 doi: 10.1016/0022-5096(68)90013-6
|
[5] |
Shih CF. Tables of Hutchinson-Rice-Rosengren singular field quantities. Brown University Materials Research Laboratory Rep. MRL E-147, 1983
|
[6] |
Betegon C, Hancock J. Two-parameter characterization of elastic-plastic crack-tip fields. Int J Appl Mech, 1991, 58: 104-113 doi: 10.1115/1.2897135
|
[7] |
Sharma SM, Aravas N. Determination of higher-order terms in asymptotic elastoplastic crack tip solutions. J Mech Phys Solids, 1991, 39: 1043-1072 doi: 10.1016/0022-5096(91)90051-O
|
[8] |
Chao YJ, Yang S, Sutton M. On the fracture of solids characterized by one or two parameters: theory and practice. J Mech Phys Solids, 1994, 42(4): 629-647 doi: 10.1016/0022-5096(94)90055-8
|
[9] |
Nikishkov GP, Bruckner-Foit A, Munz D. Calculation of the second fracture parameter for finite cracked bodies using a three-term elastic-plastic asymptotic expansion. Engng Fract Mech, 1995, 52(4): 685-701 doi: 10.1016/0013-7944(95)00024-P
|
[10] |
O'Dowd NP, Shih CF. Family of crack-tip fields characterized by a triaxiality parameter-I. Structure of fields. J Mech Phys Solids, 1991, 39(8): 989-1015 doi: 10.1016/0022-5096(91)90049-T
|
[11] |
O'Dowd NP, Shih CF. Family of crack-tip fields characterized by a triaxiality parameter-II. Fracture applications. J Mech Phys Solids, 1992, 40(5): 939-963 doi: 10.1016/0022-5096(92)90057-9
|
[12] |
Li YC, Wang ZQ. High-order asymptotic field of tensile plane-strain nonlinear crack problems. Sci Sin (Ser A)
|
[13] |
Yang S, Chao YJ, Sutton MA. Complete theoretical analysis for higher order asymptotic terms and the HRR zone at a crack tip for mode I and mode II loading of a hardening material. Acta Mech, 1993, 98: 79-98 doi: 10.1007/BF01174295
|
[14] |
Yang S, Chao YJ, Sutton M. Higher order asymptotic crack tip fields in a power law hardening material. Engng Fract Mech, 1993, 45(1): 1-20 doi: 10.1016/0013-7944(93)90002-A
|
[15] |
Nikishkov GP. An algorithm and a computer program for the three-term asymptotic expansion of elastic–plastic crack tip stress and displacement fields. Engng Fract Mech, 1995, 50(1): 65-83 doi: 10.1016/0013-7944(94)00139-9
|
[16] |
Nikishkov GP, Matvienko YG. Elastic–plastic constraint parameter A for test specimens with thickness variation. Fatigue Fract Eng Mater Struct, 2016, 39(8): 939-949 doi: 10.1111/ffe.12390
|
[17] |
Matvienko YG, Nikishkov GP. Two-parameter J-A concept in connection with crack-tip constraint. Theor Appl Fract Mech, 2017, 92: 306-317 doi: 10.1016/j.tafmec.2017.04.007
|
[18] |
Ding P, Wang X. Solutions of the second elastic–plastic fracture mechanics parameter in test specimens. Engng Fract Mech, 2010, 77: 3462-3480 doi: 10.1016/j.engfracmech.2010.09.007
|
[19] |
Ding P, Wang X. An estimation method for the determination of the second elastic–plastic fracture mechanics parameters. Engng Fract Mech, 2012, 79: 295-311 doi: 10.1016/j.engfracmech.2011.11.010
|
[20] |
Ji X, Zhu F. Finite element simulation of elastoplastic field near crack tips and results for a central cracked plate of LE-LHP material under tension. Acta Mech Sinica, 2019, 35(4): 828-838 doi: 10.1007/s10409-019-00846-1
|
[21] |
Ji X, Zhu F. Elastic-plastic multi-Scale finite element analysis of fracture test on 304 stainless steel compact tension specimen. Nov Res Sci, 2021, 7(3): 000663
|
[22] |
Anderson TL, Dodds RH. Specimen size requirements for fracture toughness testing in the transition region. Journal of Testing and Evaluation, 1991, 19(2): 123-134 doi: 10.1520/JTE12544J
|
[23] |
Mostafavi M, Pavier MJ, Smith DJ. Unified measure of constraint//International Conference on Engineering Structural Integrity Assessment, Manchester, 2009
|
[24] |
Mostafavi M, Smith DJ, Pavier MJ. Reduction of measured toughness due to out-of-plane constraint in ductile fracture of aluminium alloy specimens. Fatigue & Fracture of Engineering Materials & Structures, 2010, 33: 724-739
|
[25] |
Mostafavi M, Smith DJ, Pavier MJ. Fracture of aluminium alloy 2024 under biaxial and triaxial loading. Engineering Fracture Mechanics, 2011, 78(8): 1705-1716 doi: 10.1016/j.engfracmech.2010.11.006
|
[26] |
Mostafavi M, Smith DJ, Pavier MJ. A micromechanical fracture criterion accounting for in-plane and out-of-plane constraint. Computational Materials Science, 2011, 50(10): 2759-2770 doi: 10.1016/j.commatsci.2011.04.023
|
[27] |
Chen H, Cai LX. Theoretical model for predicting uniaxial stress-strain relation by dual conical indentation based on equivalent energy principle. Acta Materialia, 2016, 121: 181-189 doi: 10.1016/j.actamat.2016.09.008
|
[28] |
Chen H, Cai LX. Unified elastoplastic model based on strain energy equivalence principle. Appl Math Model, 2017, 52: 664-671 doi: 10.1016/j.apm.2017.07.042
|
[29] |
Chen H, Cai LX. An elastoplastic energy model for predicting the deformation behaviors of various structural components. Appl Math Model, 2019, 68: 405-421 doi: 10.1016/j.apm.2018.11.024
|
[30] |
Peng YQ, Cai LX, Chen H, et al. A novel semi-analytical method based on equivalent energy principle to obtain J resistance curves of ductile materials. Int J Mech Sci, 2018, 148: 31-38 doi: 10.1016/j.ijmecsci.2018.08.016
|
[31] |
Irwin GR. Analysis of stress and strains near the end of a crack traversing a plate. Int J Appl Mech, 1957, 24(3): 361-364 doi: 10.1115/1.4011547
|
[32] |
Anderson TL. Fracture Mechanics: Fundamentals and Applications, CRC Press: Boca Raton, 2005
|
[1] | Wang Haiyang, Zhou Desheng, Huang Hai, Li Ming. STUDY ON THE INFLUENCE MECHANISM OF SEEPAGE FORCE ON THE STRESS FIELD AROUND OPEN HOLE WELLBORE AND FORMATION BREAKDOWN PRESSURE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(7): 1559-1569. DOI: 10.6052/0459-1879-23-111 |
[2] | Jin Bo, Hu Ming, Fang Qihong. RESEARCH ON STRESS FIELD OF SURROUNDING ROCK AND LINING STRUCTURE OF DEEP-BURIED SUBSEA TUNNEL CONSIDERING SEEPAGE EFFECT[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(5): 1322-1330. DOI: 10.6052/0459-1879-21-670 |
[3] | Zhang Xirun, Cai Lixun, Chen Hui. HYPERELASTIC INDENTATION MODELS AND THE DUAL-INDENTATION METHOD BASED ON ENERGY DENSITY EQUIVALENCE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(3): 787-796. DOI: 10.6052/0459-1879-20-023 |
[4] | Fan Peng, Shuangshuang Xie, Hongliang Dai. SINGULAR STRESS FIELD IN VISCOELASTIC CONTACT INTERFACE ENDS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 494-502. DOI: 10.6052/0459-1879-18-264 |
[5] | He Yi, Cai Lixun, Chen Hui, Peng Yunqiang. A SEMI ANALYTICAL METHOD TO SOLVE J-INTEGRAL FOR MODE-I CRACK COMPONENTS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(3): 579-588. DOI: 10.6052/0459-1879-18-026 |
[6] | Wang Anping. SPECIAL HYBRID STRESS SOLID ELEMENT WITH DRILLING DEGREES OF FREEDOM AND A TRACTION-FREE CIRCULAR BOUNDARY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(1): 105-113. DOI: 10.6052/0459-1879-13-104 |
[7] | Yanqing Wu, Fenglei Huang. A powder compaction mechanical model for diffusion coupled with stress field[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(4): 550-556. DOI: 10.6052/0459-1879-2008-4-2006-489 |
[8] | A SEMI-ANALYTICAL METHOD FOR STRESS ANALYSIS OF MULTIPLANAR TUBULAR JOINTS[J]. Chinese Journal of Theoretical and Applied Mechanics, 1995, 27(1): 79-85. DOI: 10.6052/0459-1879-1995-1-1995-407 |