Citation: | Zhu Jinggao, Ren Xiaodan. Study of wave dispersion and propagation in peridynamics. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(1): 134-147. DOI: 10.6052/0459-1879-22-342 |
[1] |
高光发. 波动力学基础. 北京: 科学出版社, 2019
Gao Guangfa. Fundamentals of Wave Dynamics. Beijing: National Scientific Press, 2019 (in Chinese)
|
[2] |
李永池. 波动力学. 合肥: 中国科学技术大学出版社, 2015
Li Yongchi. Wave Dynamics. Hefei: University of Science and Technology of China Press, 2015 (in Chinese)
|
[3] |
Cox BN, Gao H, Gross D, et al. Modern topics and challenges in dynamic fracture. Journal of the Mechanics and Physics of Solids, 2005, 53(3): 565-596 doi: 10.1016/j.jmps.2004.09.002
|
[4] |
Freund LB. Dynamic Fracture Mechanics. Cambridge: Cambridge University Press, 1998
|
[5] |
Ravi-Chandar K. Dynamic Fracture. New York: Elsevier, 2004
|
[6] |
Liang Y, Zhang X, Liu Y. Extended material point method for the three-dimensional crack problems. International Journal for Numerical Methods in Engineering, 2021, 122(12): 3044-3069 doi: 10.1002/nme.6653
|
[7] |
Wu J, Wang D, Lin Z, et al. An efficient gradient smoothing meshfree formulation for the fourth-order phase field modeling of brittle fracture. Computational Particle Mechanics, 2020, 7(2): 193-207 doi: 10.1007/s40571-019-00240-5
|
[8] |
Imtiaz H, Liu B. An efficient and accurate framework to determine the failure surface/envelop in composite lamina. Composites Science and Technology, 2021, 201: 108475 doi: 10.1016/j.compscitech.2020.108475
|
[9] |
Bobaru F, Foster JT, Geubelle PH, et al. Handbook of Peridynamic Modeling. CRC Press, 2016
|
[10] |
Hu Y, Feng G, Li S, et al. Numerical modelling of ductile fracture in steel plates with non-ordinary state-based peridynamics. Engineering Fracture Mechanics, 2020, 225: 106446 doi: 10.1016/j.engfracmech.2019.04.020
|
[11] |
Yang D, He X, Liu X, et al. A peridynamics-based cohesive zone model (PD-CZM) for predicting cohesive crack propagation. International Journal of Mechanical Sciences, 2020, 184: 105830 doi: 10.1016/j.ijmecsci.2020.105830
|
[12] |
Xia Y, Meng X, Shen G, et al. Isogeometric analysis of cracks with peridynamics. Computer Methods in Applied Mechanics and Engineering, 2021, 377: 113700 doi: 10.1016/j.cma.2021.113700
|
[13] |
Silling SA. Reformulation of elasticity theory for discontinuities and long-range forces. Journal of the Mechanics and Physics of Solids, 2000, 48(1): 175-209 doi: 10.1016/S0022-5096(99)00029-0
|
[14] |
Yu H, Chen X, Sun Y. A generalized bond-based peridynamic model for quasi-brittle materials enriched with bond tension–rotation–shear coupling effects. Computer Methods in Applied Mechanics and Engineering, 2020, 372: 113405 doi: 10.1016/j.cma.2020.113405
|
[15] |
Silling SA, Epton M, Weckner O, et al. Peridynamic states and constitutive modeling. Journal of Elasticity, 2007, 88(2): 151-184 doi: 10.1007/s10659-007-9125-1
|
[16] |
Behzadinasab M, Foster JT. A semi-lagrangian constitutive correspondence framework for peridynamics. Journal of the Mechanics and Physics of Solids, 2020, 137: 103862 doi: 10.1016/j.jmps.2019.103862
|
[17] |
Zhang H, Qiao P. A two-dimensional ordinary state-based peridynamic model for elastic and fracture analysis. Engineering Fracture Mechanics, 2020, 232: 107040 doi: 10.1016/j.engfracmech.2020.107040
|
[18] |
Zhou XP, Wang YT, Shou YD, et al. A novel conjugated bond linear elastic model in bond-based peridynamics for fracture problems under dynamic loads. Engineering Fracture Mechanics, 2018, 188: 151-183 doi: 10.1016/j.engfracmech.2017.07.031
|
[19] |
Zhu QZ, Ni T. Peridynamic formulations enriched with bond rotation effects. International Journal of Engineering Science, 2017, 121: 118-129 doi: 10.1016/j.ijengsci.2017.09.004
|
[20] |
Gu X, Zhang Q, Madenci E. Non-ordinary state-based peridynamic simulation of elastoplastic deformation and dynamic cracking of polycrystal. Engineering Fracture Mechanics, 2019, 218: 106568 doi: 10.1016/j.engfracmech.2019.106568
|
[21] |
Liu Z, Bie Y, Cui Z, et al. Ordinary state-based peridynamics for nonlinear hardening plastic materials' deformation and its fracture process. Engineering Fracture Mechanics, 2019, 223: 106782
|
[22] |
王涵, 黄丹, 徐业鹏等. 非常规态型近场动力学热黏塑性模型及其应用. 力学学报, 2018, 50(4): 810-819 (Wang Han, Huang Dan, Xu Yepeng, et al. Non-ordinary state-based peridynamic thermal-viscoplastic model and its application. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(4): 810-819 (in Chinese) doi: 10.6052/0459-1879-18-113
|
[23] |
Wang H, Xu YP, Hang D. A non-ordinary state-based peridynamic formulation for thermo-visco-plastic deformation and impact fracture. International Journal of Mechanical Sciences, 2019, 159: 336-344 doi: 10.1016/j.ijmecsci.2019.06.008
|
[24] |
胡祎乐, 余音, 汪海. 基于近场动力学理论的层压板损伤分析方法. 力学学报, 2013, 45(4): 624-628 (Hu Yile, Yu Yin, Wang Hai. Damage analysis method for laminates based on peridynamic theory. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(4): 624-628 (in Chinese) doi: 10.6052/0459-1879-12-368
|
[25] |
章青, 顾鑫, 郁杨天. 冲击载荷作用下颗粒材料动态力学响应的近场动力学模拟. 力学学报, 2016, 48(1): 56-63 (Zhang Qing, Gu Xin, Yu Yangtian. Peridynamics simulation for dynamic response of granular materials under impact loading. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(1): 56-63 (in Chinese) doi: 10.6052/0459-1879-15-291
|
[26] |
Wu P, Yang F, Chen Z, et al. Stochastically homogenized peridynamic model for dynamic fracture analysis of concrete. Engineering Fracture Mechanics, 2021, 253: 107863 doi: 10.1016/j.engfracmech.2021.107863
|
[27] |
Huang XP, Kong XZ, Chen ZY, et al. Peridynamics modelling of dynamic tensile failure in concrete. International Journal of Impact Engineering, 2021, 155: 103918 doi: 10.1016/j.ijimpeng.2021.103918
|
[28] |
Bažant ZP, Luo W, Chau VT, et al. Wave dispersion and basic concepts of peridynamics compared to classical nonlocal damage models. Journal of Applied Mechanics, 2016, 83(11): 111004 doi: 10.1115/1.4034319
|
[29] |
Butt SN, Timothy JJ, Meschke G. Wave dispersion and propagation in state-based peridynamics. Computational Mechanics, 2017, 60(5): 725-738 doi: 10.1007/s00466-017-1439-7
|
[30] |
Wildman RA. Discrete micromodulus functions for reducing wave dispersion in linearized peridynamics. Journal of Peridynamics and Nonlocal Modeling, 2019, 1(1): 56-73 doi: 10.1007/s42102-018-0001-0
|
[31] |
Gu X, Zhang Q, Huang D, et al. Wave dispersion analysis and simulation method for concrete SHPB test in peridynamics. Engineering Fracture Mechanics, 2016, 160: 124-137 doi: 10.1016/j.engfracmech.2016.04.005
|
[32] |
Li S, Jin Y, Lu H, et al. Wave dispersion and quantitative accuracy analysis of bond-based peridynamic models with different attenuation functions. Computational Materials Science, 2021, 197: 110667 doi: 10.1016/j.commatsci.2021.110667
|
[33] |
Wildman RA, Gazonas GA. A finite difference-augmented peridynamics method for reducing wave dispersion. International Journal of Fracture, 2014, 190(1): 39-52
|
[34] |
Alebrahim R, Packo P, Zaccariotto M, et al. Improved wave dispersion properties in 1D and 2D bond-based peridynamic media. Computational Particle Mechanics, 2021, 9: 597-614
|
[35] |
Zhou G, Hillman M. A non-ordinary state-based Godunov-peridynamics formulation for strong shocks in solids. Computational Particle Mechanics, 2020, 7(2): 365-375 doi: 10.1007/s40571-019-00254-z
|
[36] |
Ren XD, Zhu JG. Temporally stabilized peridynamics methods for shocks in solids. Computational Mechanics, 2021, 69: 489-504
|
[37] |
Zhu F, Zhao J. Peridynamic modelling of blasting induced rock fractures. Journal of the Mechanics and Physics of Solids, 2021, 153: 104469 doi: 10.1016/j.jmps.2021.104469
|
[38] |
黄丹, 章青, 乔丕忠等. 近场动力学方法及其应用. 力学进展, 2010, 40(4): 448-459 (Huang Dan, Zhang Qing, Qiao Pizhong, et al. A review of peridynamics (PD) method and its application. Advances in mechanics, 2010, 40(4): 448-459 (in Chinese) doi: 10.6052/1000-0992-2010-4-J2010-002
|
[39] |
Jia F, Gao Z, Don WS. A spectral study on the dissipation and dispersion of the WENO schemes. Journal of Scientific Computing, 2015, 63(1): 49-77 doi: 10.1007/s10915-014-9886-1
|
[40] |
Ren B, Fan H, Bergel GL, et al. A peridynamics–SPH coupling approach to simulate soil fragmentation induced by shock waves. Computational Mechanics, 2015, 55(2): 287-302 doi: 10.1007/s00466-014-1101-6
|
[41] |
Monaghan JJ. On the problem of penetration in particle methods. Journal of Computational physics, 1989, 82(1): 1-15 doi: 10.1016/0021-9991(89)90032-6
|
[42] |
Silling SA, Parks ML, Kamm JR, et al. Modeling shockwaves and impact phenomena with Eulerian peridynamics. International Journal of Impact Engineering, 2017, 107: 47-57 doi: 10.1016/j.ijimpeng.2017.04.022
|
[43] |
Lai X, Liu L, Li S, et al. A non-ordinary state-based peridynamics modeling of fractures in quasi-brittle materials. International Journal of Impact Engineering, 2018, 111: 130-146 doi: 10.1016/j.ijimpeng.2017.08.008
|
[44] |
Caramana EJ, Shashkov MJ, Whalen PP. Formulations of artificial viscosity for multi-dimensional shock wave computations. Journal of Computational Physics, 1998, 144(1): 70-97 doi: 10.1006/jcph.1998.5989
|
[45] |
Landshoff R. A numerical method for treating fluid flow in the presence of shocks. Los Alamos National Lab NM, 1955
|
[46] |
Silling SA, Askari E. A meshfree method based on the peridynamic model of solid mechanics. Computers & Structures, 2005, 83(17-18): 1526-1535
|
[47] |
Achenbach J. Wave Propagation in Elastic Solids. New York: Elsevier, 2012
|