EI、Scopus 收录
中文核心期刊
Yan A’min, Qiao Yu, Dai Lanhong. Formation and stability of shaped charge liner jet of CrMnFeCoNi high-entropy alloy. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(8): 2119-2130. DOI: 10.6052/0459-1879-22-274
Citation: Yan A’min, Qiao Yu, Dai Lanhong. Formation and stability of shaped charge liner jet of CrMnFeCoNi high-entropy alloy. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(8): 2119-2130. DOI: 10.6052/0459-1879-22-274

FORMATION AND STABILITY OF SHAPED CHARGE LINER JET OF CrMnFeCoNi HIGH-ENTROPY ALLOY

  • Received Date: June 16, 2022
  • Accepted Date: July 22, 2022
  • Available Online: July 23, 2022
  • Recently emerging multi-principal component high-entropy alloy is expected to replace copper as a new generation of shaped charge liner material due to its wide composition/property control range and a series of excellent mechanical properties. Based on the experiments and numerical simulation of dynamic mechanical properties of five-element CrMnFeCoNi high-entropy alloy, the feasibility of this alloy as a shaped charge liner is explored. The mechanical behavior of high-entropy alloys at different strain rates and temperatures was studied via split Hopkinson tensile bar (SHTB) and material testing machine, and a Johnson-Cook thermal viscoplastic dynamic constitutive model of high-entropy alloys was established. The continuity condition of high-entropy alloy jet is explored based on the relationship between flow velocity and critical collapse angle. The continuity condition of high-entropy alloy jet is verified by finite element simulation, and the evolution law of high-speed tensile fracture of high-entropy alloy jet is further investigated. The results show that the jet break-up time is negatively correlated with the material tensile strength, and when the dynamic tensile strength increases, the jet break-up time will decrease. This work was provide references for the structural design of novel high-entropy alloy linev.
  • [1]
    Walters WP, Zukas J. Fundamentals of Shaped Charge. New York: Wiley Interscience Publication, 1989
    [2]
    Meyers MA. Dynamic Behavior of Materials. New York: John Willey & Sons, 1994
    [3]
    焦文俊, 陈小伟. 长杆高速侵彻问题研究进展. 力学进展, 2019, 49(1): 312-391 doi: 10.6052/1000-0992-17-021

    Jiao Wenjun, Chen Xiaowei. Review on long-rod penetration at hypervelocity. Advances in Mechanics, 2019, 49(1): 312-391 (in Chinese) doi: 10.6052/1000-0992-17-021
    [4]
    谈梦婷, 张先锋, 包阔等. 装甲陶瓷的界面击溃效应. 力学进展, 2019, 49(01): 392-427 doi: 10.6052/1000-0992-17-015

    Tan Mengting, Zhang Xianfeng, Bao Kuo, et al. Interface defeat of ceramic armor. Advances in Mechanics, 2019, 49(1): 392-427 (in Chinese)) doi: 10.6052/1000-0992-17-015
    [5]
    Munroe CE. Wave-like effects produced by detonation of gun-cotton. American Journal of Science, 1888, 36(211): 48-50
    [6]
    郑哲敏, 高举贤, 谈庆明等. 聚能射流侵彻过程模型律. 力学学报, 1974, 1: 1-10

    Zheng Zhemin, Gao Juxian, Tang Qingming, et al. Scaling law in the penetration process of shaped chargejet. Chinese Journal of Theoretical and Applied Mechanics, 1974, 1: 1-10 (in Chinese)
    [7]
    郑哲敏, 谈庆明. 破甲机理的力学分析与简化模型 (631破甲机理课题研究进展报告). 科技参考资料, 1977, 6: 108-164

    Zheng Zhemin, Tan Qingming. Mechanical analysis and simplified model of armor penetration mechanism (631 Research progress report of the armor penetration project). Science and Technology Reference Material, 1977, 6: 108-164 (in Chinese)
    [8]
    郑哲敏. 聚能射流的稳定性问题. 爆炸与冲击, 1981, (01): 6-17

    Zheng Zhemin. Stability of jet produced by shaped charge. Explosion and Shock Waves, 1981, (01): 6-17 (in Chinese))
    [9]
    郑哲敏. 关于射流侵彻的几个问题. 兵工学报, 1980, 1: 13-22

    Zheng Zhemin. Several problems on jet penetration. Acta Armamentarii, 1980, 1: 13-22 (in Chinese)
    [10]
    戴兰宏. 工程科学前沿的拓荒者——郑哲敏. 力学进展, 2013, 43(03): 265-294 doi: 10.6052/1000-0992-13-033

    Dai Lanhong. A pioneer in the frontier of engineering science—Zhe-Min Zheng. Advances in Mechanics, 2013, 43(3): 265-294 (in Chinese)) doi: 10.6052/1000-0992-13-033
    [11]
    Held M. Liners for shaped chapeds. Journal of Battlefield Technology, 2001, 4: 1-7
    [12]
    张晓伟, 段卓平, 张庆明. 钛合金药型罩聚能装药射流成型与侵彻实验研究. 北京理工大学学报, 2014, 34(12): 1229-1233 doi: 10.15918/j.tbit1001-0645.2014.12.004

    Zhang Xiaowei, Duan Zhuoping, Zhang Qingming. Experimental study on the jet formation and penetration of conical shaped charged with titanium alloy liner. Transacctions of Beijing Institute of Technology, 2014, 34(12): 1229-1233 (in Chinese) doi: 10.15918/j.tbit1001-0645.2014.12.004
    [13]
    徐文龙, 王成, 徐斌. 超聚能射流形成过程机理研究. 兵工学报, 2018, 39(02): 261-268 doi: 10.3969/j.issn.1000-1093.2018.02.007

    Xu Wenlong, Wang Cheng, Xu Bin. Investigation of Hyper Shaped Charge Jet Formation Theory. Acta Armamentarii, 2018, 39(02): 261-268 (in Chinese) doi: 10.3969/j.issn.1000-1093.2018.02.007
    [14]
    Xi B, Liu J, Li S, et al. Effect of interaction mechanism between jet and target on penetration performance of shaped charge liner. Materials Science and Engineering A, 2012, 553: 142-148 doi: 10.1016/j.msea.2012.06.003
    [15]
    熊玮, 张先锋, 陈亚旭等. 冷轧成型Al/Ni多层复合材料力学行为与冲击释能特性研究. 爆炸与冲击, 2019, 39(05): 130-138

    Xiong Wei, Zhang Xianfeng, Chen Yanxu, et al. Mechanical properties and shock-induced chemical reaction behaviors of cold-rolled Al/Ni multi-layered composites. Explosion and Shock Waves, 2019, 39(05): 130-138 (in Chinese)
    [16]
    Wang HF, Guo HG, Geng B, et al. Application of PTFE/Al reactive materials for double-layered liner shaped charge. Materials, 2019, 12(17): 2768 doi: 10.3390/ma12172768
    [17]
    Guo HG, Zheng YF, He S, et al. Reaction characteristic of PTFE/Al/Cu/Pb composites and application in shaped charge liner. Defence Technology, 2021, 472: 1-11
    [18]
    陈泽坤, 蒋佳希, 王宇嘉等. 金属增材制造中的缺陷、组织形貌和成形材料力学性能. 力学学报, 2021, 53(12): 3190-3205 doi: 10.6052/0459-1879-21-472

    Chen Zekun, Jiang Jiaxi, Wang Yujia, et al. Defects, microstructures and mechanical properties of materials fabricated by metal additive manufacturing. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(12): 3190-3205 (in Chinese) doi: 10.6052/0459-1879-21-472
    [19]
    廉艳平, 王潘丁, 高杰等. 金属增材制造若干关键力学问题研究进展. 力学进展, 2021, 51(3): 648-701 doi: 10.6052/1000-0992-21-037

    Lian Yanping, Wang Panding, Gao Jie, et al. Fundamental mechanics problems in metal additive manufacturing: A state-of-art review. Advances in Mechanics, 2021, 51(3): 648-701 (in Chinese)) doi: 10.6052/1000-0992-21-037
    [20]
    Walters WP, Kecskes LJ, Pritchett JE. Investigation of a bulk metallic glass as a shaped charge liner material. Army Research Laboratory, No. ARL-TR-3864, 2006
    [21]
    Walsh J, Shreffler R, Willig F. Limiting conditions for jet formation in high velocity collisions. Journal of Applied Physics, 1953, 24(3): 349-359 doi: 10.1063/1.1721278
    [22]
    Chou PC, Carleone J, Karpp RR. Criteria for jet formation from impinging shells and plates. Journal of Applied Physics, 1976, 47(7): 2975-2981 doi: 10.1063/1.323038
    [23]
    Elshenawy T, Li QM, Elbeih A. Experimental and numerical investigation of zirconium jet performance with different liner shapes design. Defence Technology, 2020, 18(1): 1-15
    [24]
    Chou PC, Carleone J. The stability of shaped charge jets. Journal of Applied Physics, 1977, 48(10): 4187-4195 doi: 10.1063/1.323456
    [25]
    Yeh JW, Chen SK, Lin SJ, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Advanced Engineering Materials, 2004, 6(5): 299-303 doi: 10.1002/adem.200300567
    [26]
    Cantor B, Chang ITH, Knight P, et al. Microstructural development in equiatomic multicomponent alloys. Materials Science and EngineeringA, 2004, 375-377: 213-218 doi: 10.1016/j.msea.2003.10.257
    [27]
    George EP, Raabe D, Ritchie RO. High-entropy alloys. Nature Reviews Materials, 2019, 4(8): 515-534 doi: 10.1038/s41578-019-0121-4
    [28]
    卜叶强, 王宏涛. 多主元合金中的化学短程有序. 力学进展, 2021, 51( 4): 915-919 doi: 10.6052/1000-0992-21-027

    Bu Ye qing, Wang Hongtao. Short-range order in multicomponent alloys. Advances in Mechanics, 2021, 51(4): 915-919 (in Chinese) doi: 10.6052/1000-0992-21-027
    [29]
    Dai LH, Ling Z, Bai YL. A strain gradient-strengthening law for particle reinforced metal matrix composites. Scripta Materialia, 1999, 41(3): 245-251 doi: 10.1016/S1359-6462(99)00153-0
    [30]
    Dai LH, Liu LF, Bai YL. Formation of adiabatic shear band in metal matrix composites. International Journal of Solids Structures, 2004, 41(22-23): 5979-5993 doi: 10.1016/j.ijsolstr.2004.05.023
    [31]
    Liu XF, Tian Z, Zhang XF, et al. "Self-sharpening" tungsten high-entropy alloy. Acta Materialia, 2020, 186: 257-266 doi: 10.1016/j.actamat.2020.01.005
    [32]
    陈海华, 张先锋, 熊玮等. WFeNiMo高熵合金动态力学行为及侵彻性能研究. 力学学报, 2020, 52(05): 1443-1453

    Chen Haihua, Zhang Xianfeng, Xiong Wei, et al. Dynamic mechanical behavior and penetration performance of WFeNiMo high-entropy alloy. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(05): 1443-1453 (in Chinese)
    [33]
    侯先苇, 熊玮, 陈海华等. 两种典型高熵合金冲击释能及毁伤特性研究. 力学学报, 2021, 53(09): 2528-2540 doi: 10.6052/0459-1879-21-327

    Hou Xianwei, Xiong Wei, Chen Haihua, et al. Impact energy release and damage characteristics of two high-entropy alloys. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(9): 2528-2540 (in Chinese) doi: 10.6052/0459-1879-21-327
    [34]
    Chen J, Liu TW, Cao FH, et al. Deformation behavior and microstructure evolution of CoCrNi medium-entropy alloy shaped charge liners. Metals, 2022, 12(5): 811 doi: 10.3390/met12050811
    [35]
    王维斌, 索涛, 郭亚洲等. 电磁霍普金森杆实验技术及研究进展. 力学进展, 2021, 51(4): 729-754 doi: 10.6052/1000-0992-20-024

    (Wang Weibin, Suo Tao, Guo Yazhou, et al. Experimental technique and research progress of electromagnetic Hopkinson bar. Advances in Mechanics, 2021, 51(4): 729-754 in Chinese doi: 10.6052/1000-0992-20-024
    [36]
    Jiang Z, He J, Wang H, et al. Shock compression response of high entropy alloys. Materials Research Letters, 2016, 4(4): 226-232 doi: 10.1080/21663831.2016.1191554
    [37]
    Pugh EM, Eichelberger R, Rostoker N. Theory of jet formation by charges with lined conical cavities. Journal of Applied Physics, 1952, 23(5): 532-536 doi: 10.1063/1.1702246
    [38]
    Xu W, Wang C, Chen D. Formation of a bore-center annular shaped charge and its penetration into steel targets. International Journal of Impact Engineering, 2019, 127: 122-134 doi: 10.1016/j.ijimpeng.2019.01.008
    [39]
    Xu W, Wang C, Chen D. The jet formation and penetration capability of hypervelocity shaped charges. International Journal of Impact Engineering, 2019, 132: 103337 doi: 10.1016/j.ijimpeng.2019.103337
    [40]
    Lee EL, Horning HC, Kury JW. Adiabatic expansion of high explosive detonation products. San Francisco: University of California. Technical Report, No. UCRL-50422, 1968
    [41]
    Guo HG, Zheng Y, Tang L, et al. Effect of wave shaper on reactive materials jet formation and its penetration performance. Defence Technology, 2019, 15(4): 495-505 doi: 10.1016/j.dt.2019.05.005
    [42]
    Carleone J, Jameson R, Chou PC. The tip origin of a shaped charge jet. Propellants, Explosives, Pyrotechnics, 1977, 2(6): 126-130 doi: 10.1002/prep.19770020604
    [43]
    Guo HG, Su CH, Cai YQ, et al. Reactive jet density distribution effect on its penetration behavior. Defence Technology, 2022, in press
    [44]
    Chou PC, Flis WJ. Recent developments in shaped charge technology. Propellants, Explosives, Pyrotechnics, 1986, 11(4): 99-114 doi: 10.1002/prep.19860110402
    [45]
    Miracle DB, Senkov ON. A critical review of high entropy alloys and related concepts. Acta Materialia, 2017, 122: 448-511 doi: 10.1016/j.actamat.2016.08.081
  • Related Articles

    [1]Fan Shengzhe, Sun Ruqi, Zhao Xuan, Wong Waion, Cheng Li. H DESIGN AND EXPERIMENTAL STUDY OF TWO TYPES OF DYNAMIC VIBRATION ABSORBERS WITH TUNABLE DAMPING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(11): 3324-3332. DOI: 10.6052/0459-1879-24-260
    [2]Guo Yuan, Fu Zhuojia, Min Jian, Liu Xiaoting, Zhao Haitao. CURRICULUM-TRANSFER-LEARNING BASED PHYSICS-INFORMED NEURAL NETWORKS FOR LONG-TIME SIMULATION OF NONLINEAR WAVE PROPAGATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(3): 763-773. DOI: 10.6052/0459-1879-23-457
    [3]Guo Yi, Guo Dilong, Yang Guowei, Liu Wen. MOVING MODEL ANALYSIS OF THE SLIPSTREAM OF A LONG GROUPING HIGH-SPEED TRAIN[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(1): 105-114. DOI: 10.6052/0459-1879-20-226
    [4]An Yi, Mo Huangrui, Liu Qingquan. STUDY ON THE INFLUENCE OF THE NOSE SLENDERNESS RATIO OF HIGH-SPEED TRAIN ON THE AERODYNAMIC NOISE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(5): 985-996. DOI: 10.6052/0459-1879-17-126
    [5]Wang Yunpeng, Liu Yunfeng, Yuan Chaokai, Luo Changtong, Wang Chun, Hu Zongmin, Han Guilai, Zhao Wei, Jiang Zonglin. STUDY ON FORCE MEASUREMENT IN LONG-TEST DURATION SHOCK TUNNEL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 545-556. DOI: 10.6052/0459-1879-15-295
    [6]Tong Zhao Longxiang Chen Guoping Cai. Theoretical and experimental studies of H∞ control for a flexible plate with time delay[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(6): 1043-1053. DOI: 10.6052/0459-1879-2011-6-lxxb2011-076
    [7]Yuezhang Xia, Keqin Zhu. A study of linear long wave attenuation over a Maxwell mud bed[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(3): 343-349. DOI: 10.6052/0459-1879-2010-3-2009-151
    [8]Zhenhua Huang, M.S. Ghidaoui. A model for the scattering of long waves by slotted breakwaters in the presence of currents[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(1): 1-9. DOI: 10.6052/0459-1879-2007-1-2006-240
    [9]Minimum H∞ norm estimation of interval systems by an eigenvalue perturbation method[J]. Chinese Journal of Theoretical and Applied Mechanics, 2004, 36(6): 757-761. DOI: 10.6052/0459-1879-2004-6-2003-396
    [10]WU CHUNG-HUA. THE AERODYNAMIC PROBLEM OF RADIALLY LONG BLADES IN TURBOMIACHINES[J]. Chinese Journal of Theoretical and Applied Mechanics, 1957, 1(1): 15-48. DOI: 10.6052/0459-1879-1957-1-1957-010
  • Cited by

    Periodical cited type(5)

    1. 晏班夫,寇宇航,秦筵越,罗磊,李寿科,李水生. 基于DIC方法的混凝土结构裂缝开展全局识别与重构. 中国公路学报. 2024(03): 283-297 .
    2. 董伟,赵广臣,施天威,张海东,毛镪. 基于可靠子区数字图像相关方法的裂纹位移场测量. 实验力学. 2024(06): 775-784 .
    3. 程斌,李得睿. 基于退相关DIC的疲劳裂纹全局动态测量方法. 力学学报. 2022(04): 1040-1050 . 本站查看
    4. 董伟,王学滨. 岩土工程相似模拟试验观测的可靠子区数字图像相关方法. 岩土力学. 2021(09): 2525-2534 .
    5. 杜鉴昕,赵加清,王海涛,孙立斌,吴莘馨. 一种针对裂尖变形场测量的正则化全局DIC方法. 光学学报. 2020(11): 116-123 .

    Other cited types(7)

Catalog

    Article Metrics

    Article views (1286) PDF downloads (289) Cited by(12)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return