EI、Scopus 收录
中文核心期刊
Hao Qi, Qiao Jichao. Stress relaxation dynamics for amorphous alloys based on the evolution of microstructural heterogeneity. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(11): 3058-3067. DOI: 10.6052/0459-1879-22-255
Citation: Hao Qi, Qiao Jichao. Stress relaxation dynamics for amorphous alloys based on the evolution of microstructural heterogeneity. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(11): 3058-3067. DOI: 10.6052/0459-1879-22-255

STRESS RELAXATION DYNAMICS FOR AMORPHOUS ALLOYS BASED ON THE EVOLUTION OF MICROSTRUCTURAL HETEROGENEITY

  • Received Date: June 07, 2022
  • Accepted Date: August 03, 2022
  • Available Online: August 04, 2022
  • The correlation between stress relaxation behavior and the evolution of microstructural heterogeneity of Zr-based amorphous alloys was probed. Amorphous alloy is the typical non-equilibrium solid system. Stress relaxation process is accompanied by aging effect of the amorphous alloy. In the current work, the coupling evolution of the most probably characteristic time τ and stretched exponent β in the classical stretched function is considered for the first time, indicating the time dependence of structural state in the stress relaxation process. Based on the evolution of the non-equilibrium structure state of the amorphous alloys, the aging effect in the stress relaxation behavior was clarified. The results demonstrated that the stress relaxation behavior of amorphous alloys has non exponential characteristics. The exponential relaxation form of single characteristic time and the finite spectrum method of finite characteristic time cannot describe accurately the experimental results. This phenomenon is ascribed to the continuous distribution of the characteristic time spectrum caused by the microstructural heterogeneity of amorphous alloys. In addition, the stress relaxation behavior in the apparent elastic region is independent of the initial strain, which is due to the macroscopic flow nature of the stress relaxation behavior. Elastic and anelastic reversible deformation is transformed into viscoplastic (irreversible) deformation. Finally, Evolution of structural parameters caused by aging during stress relaxation is considered, which is reflected in the increase of characteristic time τ and the decrease of stretched exponent β.
  • [1]
    王云江, 魏丹, 韩懂等. 非晶态固体的结构可以决定性能吗? 力学学报, 2020, 52(2): 1-15 (Wang Yunjiang, Wei Dan, Han Dong, et al. Does structure determine property in amorphous solids? Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 1-15 (in Chinese)
    [2]
    乔吉超, 张浪渟, 童钰等. 基于微观结构非均匀性的非晶合金力学行为. 力学进展, 2022, 52(1): 117-152 (Qiao Jichao, Zhang Langting, Tong Yu, et al. Mechancial properties of amorphous alloys: In the framework of the microstructure heterogeneity. Advances in Mechanics, 2022, 52(1): 117-152 (in Chinese) doi: 10.6052/1000-0992-21-038
    [3]
    Wang WH. The elastic properties, elastic models and elastic perspectives of metallic glasses. Progress in Materials Science, 2012, 57(3): 487-656 doi: 10.1016/j.pmatsci.2011.07.001
    [4]
    Inoue A, Takeuchi A. Recent development and application products of bulk glassy alloys. Acta Materialia, 2011, 59(6): 2243-2267 doi: 10.1016/j.actamat.2010.11.027
    [5]
    Khmich A, Hassani A, Sbiaai K, et al. Tuning of mechanical properties of Tantalum-based metallic glasses. International Journal of Mechanical Sciences, 2021, 204: 106546
    [6]
    Sun BA, Song KK, Pauly S, et al. Transformation-mediated plasticity in CuZr based metallic glass composites: A quantitative mechanistic understanding. International Journal of Plasticity, 2016, 85: 34-51 doi: 10.1016/j.ijplas.2016.06.004
    [7]
    Zhou HF, Qu SX, Yang W. An atomistic investigation of structural evolution in metallic glass matrix composites. International Journal of Plasticity, 2013, 44: 147-160 doi: 10.1016/j.ijplas.2013.01.002
    [8]
    Jiang MQ, Ling Z, Meng JX, et al. Energy dissipation in fracture of bulk metallic glasses via inherent competition between local softening and quasi-cleavage. Philosophical Magazine, 2008, 88(3): 407-426 doi: 10.1080/14786430701864753
    [9]
    Jiang MQ, Wilde G, Dai LH. Origin of stress overshoot in amorphous solids. Mechanics of Materials, 2015, 81: 72-83 doi: 10.1016/j.mechmat.2014.10.002
    [10]
    Argon A. Plastic deformation in metallic glasses. Acta Metallurgica, 1979, 27(1): 47-58 doi: 10.1016/0001-6160(79)90055-5
    [11]
    Cheng YT, Hao Q, Pelletier JM, et al. Modelling and physical analysis of the high-temperature rheological behavior of a metallic glass. International Journal of Plasticity, 2021, 146: 103107
    [12]
    汪卫华. 非晶态物质的本质和特性. 物理学进展, 2013, 33(5): 4-178 (Wang Weihua. The nature and properties of amorphous mater. Progress in Physics, 2013, 33(5): 4-178 (in Chinese)
    [13]
    Hao Q, Lyu GJ, Pineda E, et al. A hierarchically correlated flow defect model for metallic glass: Universal understanding of stress relaxation and creep. International Journal of Plasticity, 2022, 154: 103288 doi: 10.1016/j.ijplas.2022.103288
    [14]
    Qiao JC, Wang Q, Pelletier JM, et al. Structural heterogeneities and mechanical behavior of amorphous alloys. Progress in Materials Science, 2019, 104: 250-329 doi: 10.1016/j.pmatsci.2019.04.005
    [15]
    Liu YH, Wang D, Nakajima K, et al. Characterization of nanoscale mechanical heterogeneity in a metallic glass by dynamic force microscopy. Physical Review Letters, 2011, 106(12): 125504 doi: 10.1103/PhysRevLett.106.125504
    [16]
    Yang Y, Zhou J, Zhu F, et al. Determining the three-dimensional atomic structure of an amorphous solid. Nature, 2021, 592(7852): 60-64 doi: 10.1038/s41586-021-03354-0
    [17]
    Nomoto K, Ceguerra AV, Gammer C, et al. Medium-range order dictates local hardness in bulk metallic glasses. Materials Today, 2021, 44: 48-57 doi: 10.1016/j.mattod.2020.10.032
    [18]
    Zhu F, Song SX, Reddy KM, et al. Spatial heterogeneity as the structure feature for structure–property relationship of metallic glasses. Nature Communications, 2018, 9(1): 3965 doi: 10.1038/s41467-018-06476-8
    [19]
    Cheng YQ, Ma E. Atomic-level structure and structure-property relationship in metallic glasses. Progress in Materials Science, 2011, 56(4): 379-473 doi: 10.1016/j.pmatsci.2010.12.002
    [20]
    Tang CG, Harrowell P. Anomalously slow crystal growth of the glass-forming alloy CuZr. Nature Materials, 2013, 12(6): 507-511 doi: 10.1038/nmat3631
    [21]
    Wagner H, Bedorf D, Küchemann S, et al. Local elastic properties of a metallic glass. Nature Materials, 2011, 10(6): 439-442 doi: 10.1038/nmat3024
    [22]
    Fujita T, Guan PF, Sheng HW, et al. Coupling between chemical and dynamic heterogeneities in a multicomponent bulk metallic glass. Physical Review B, 2010, 81(14): 140204 doi: 10.1103/PhysRevB.81.140204
    [23]
    Zhu ZG, Wen P, Wang DP, et al. Characterization of flow units in metallic glass through structural relaxations. Journal of Applied Physics, 2013, 114(8): 083512 doi: 10.1063/1.4819484
    [24]
    Wang Z, Wang WH. Flow units as dynamic defects in metallic glassy materials. National Science Review, 2019, 6(2): 304-323 doi: 10.1093/nsr/nwy084
    [25]
    Turnbull D, Cohen MH. On the free-volume model of the liquid-glass transition. The Journal of Chemical Physics, 1970, 52(6): 3038-3041 doi: 10.1063/1.1673434
    [26]
    Perez J. Quasi-punctual defects in vitreous solids and liquid-glass transition. Solid State Ionics, 1990, 39(1): 69-79
    [27]
    Cheng YT, Hao Q, Qiao JC, et al. Effect of minor addition on dynamic mechanical relaxation in ZrCu-based metallic glasses. Journal of Non-Crystalline Solids, 2021, 553: 120496 doi: 10.1016/j.jnoncrysol.2020.120496
    [28]
    Spaepen F. A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metallurgica, 1977, 25(4): 407-415 doi: 10.1016/0001-6160(77)90232-2
    [29]
    Falk ML, Langer JS. Dynamics of viscoplastic deformation in amorphous solids. Physical Review E, 1998, 57(6): 7192-7205 doi: 10.1103/PhysRevE.57.7192
    [30]
    Yang Y, Zeng JF, Volland A, et al. Fractal growth of the dense-packing phase in annealed metallic glass imaged by high-resolution atomic force microscopy. Acta Materialia, 2012, 60(13-14): 5260-5272 doi: 10.1016/j.actamat.2012.06.025
    [31]
    Ke HB, Zeng JF, Liu C T, et al. Structure Heterogeneity in Metallic Glass: Modeling and Experiment. Journal of Materials Science and Technology, 2014, 30(6): 560-565 doi: 10.1016/j.jmst.2013.11.014
    [32]
    Wang WH. Dynamic relaxations and relaxation-property relationships in metallic glasses. Progress in Materials Science, 2019, 106: 100561 doi: 10.1016/j.pmatsci.2019.03.006
    [33]
    Hao Q, Qiao JC, Goncharova EV, et al. Thermal effects and evolution of the defect concentration based on shear modulus relaxation data in a Zr-based metallic glass. Chinese Physics B, 2020, 29(8): 086402 doi: 10.1088/1674-1056/ab969c
    [34]
    Debye P. Polar Molecules. New York: Chemical Catalog Company, 1929
    [35]
    Jiao W, Wen P, Peng HL, et al. Evolution of structural and dynamic heterogeneities and activation energy distribution of deformation units in metallic glass. Applied Physics Letters, 2013, 102(10): 101903 doi: 10.1063/1.4795522
    [36]
    Taub A, Spaepen F. Ideal elastic, anelastic and viscoelastic deformation of a metallic glass. Journal of Materials Science, 1981, 16(11): 3087-3092 doi: 10.1007/BF00540316
    [37]
    Schuh CA, Hufnagel TC, Ramamurty U. Mechanical behavior of amorphous alloys. Acta Materialia, 2007, 55(12): 4067-4109 doi: 10.1016/j.actamat.2007.01.052
    [38]
    Ye JC, Lu J, Liu CT, et al. Atomistic free-volume zones and inelastic deformation of metallic glasses. Nature Materials, 2010, 9(8): 619-623 doi: 10.1038/nmat2802
    [39]
    Atzmon M, Ju JD. Microscopic description of flow defects and relaxation in metallic glasses. Physical Review E, 2014, 90(4): 042313 doi: 10.1103/PhysRevE.90.042313
    [40]
    Liu ZY, Yang Y. A mean-field model for anelastic deformation in metallic-glasses. Intermetallics, 2012, 26: 86-90 doi: 10.1016/j.intermet.2012.03.052
    [41]
    Casalini R, Roland CM. Aging of the secondary relaxation to probe structural relaxation in the glassy state. Physical Review Letters, 2009, 102(3): 035701 doi: 10.1103/PhysRevLett.102.035701
    [42]
    Palmer RG, Stein DL, Abrahams E, et al. Models of hierarchically constrained dynamics for glassy relaxation. Physical Review Letters, 1984, 53(10): 958-961 doi: 10.1103/PhysRevLett.53.958
    [43]
    Perez J. Physics and Mechanics of Amorphous Polymers. CRC Press, 1998
  • Related Articles

    [1]Kong Lingfa, Dong Yidao, Liu Wei. THE INFLUENCE OF GLOBAL-DIRECTION STENCIL ON GRADIENT AND HIGH-ORDER DERIVATIVES RECONSTRUCTION OF UNSTRUCTURED FINITE VOLUME METHODS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(5): 1334-1349. DOI: 10.6052/0459-1879-20-093
    [2]Chen Shaolin, Guo Qichao, Zhou Guoliang. PARTITIONED HYBRID METHOD FOR SOIL-STRUCTURE INTERACTION ANALYSIS OF NUCLEAR POWER STRUCTURE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 258-282. DOI: 10.6052/0459-1879-19-271
    [3]Nianhua Wang, Xinghua Chang, Rong Ma, Laiping Zhang. VERIFICATION AND VALIDATION OF HYPERFLOW SOLVER FOR SUBSONIC AND TRANSONIC TURBULENT FLOW SIMULATIONS ON UNSTRUCTURED/HYBRID GRIDS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 813-825. DOI: 10.6052/0459-1879-18-331
    [4]Wan Yunbo, Ma Rong, Wang Nianhua, Zhang Laiping, Gui Yewei. ACCURATE AERO-HEATING PREDICTIONS BASED ON MUL-TI-DIMENSIONAL GRADIENT RECONSTRUCTION ON HYBRID UNSTRUCTURED GRIDS1)[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(5): 1003-1012. DOI: 10.6052/0459-1879-18-082
    [5]Qin Wanglong, Lü Hongqiang, Wu Yizhao. HIGH-ORDER DISCONTINUOUS GALERKIN SOLUTION OF N-S EQUATIONS ON HYBRID MESH[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(6): 987-991. DOI: 10.6052/0459-1879-13-151
    [6]He Lixin. A class of discontinuous galerkin/finite volume hybrid schemes based on the ``static re-construction'' and ``dynamic re-construction''[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(6): 1013-1022. DOI: 10.6052/0459-1879-2010-6-lxxb2009-514
    [7]Laiping Zhang, Xinghua Chang, Xupeng Duan, Zhenya Wang, Hanxin Zhang. Implicit algorithm based on dynamic hybrid mesh for incompressible unsteady flows[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 39(5): 577-586. DOI: 10.6052/0459-1879-2007-5-2006-397
    [8]Hybrid moving grid generation and implicit algorithm for unsteady flows[J]. Chinese Journal of Theoretical and Applied Mechanics, 2004, 36(6): 664-672. DOI: 10.6052/0459-1879-2004-6-2003-157
    [9]A CARTESIAN/TRIANGULAR HYBRID GRID SOLVER FOR COMPLEX INVISCID FLOW FIELDS[J]. Chinese Journal of Theoretical and Applied Mechanics, 1998, 30(1): 104-108. DOI: 10.6052/0459-1879-1998-1-1995-104
    [10]SOLUTION OF N S EQUATIONS ON UNSTRUCTURED GRID[J]. Chinese Journal of Theoretical and Applied Mechanics, 1996, 28(6): 641-650. DOI: 10.6052/0459-1879-1996-6-1995-383
  • Cited by

    Periodical cited type(6)

    1. 杜一鸣,麻彤,邱福生,陈祖昌. 国家数值风洞风雷软件结构/非结构混合网格同构计算特性. 气动研究与试验. 2024(05): 22-39 .
    2. 陈江涛,肖维,赵炜,张培红,杨福军,金韬,郭勇颜,吴晓军,陈坚强,王瑞利,李立. 计算流体力学验证与确认研究进展. 力学进展. 2023(03): 626-660 .
    3. 李鲁彦,李醒飞,姜明波,杨少波. 深海自持式剖面浮标水动力特性分析. 海洋湖沼通报. 2021(04): 46-54 .
    4. 黄灿,刘青泉,王晓亮. 梯级溃坝洪水洪峰增强机制. 力学学报. 2020(03): 645-655 . 本站查看
    5. 陈林烽. 基于Navier-Stokes方程残差的隐式大涡模拟有限元模型. 力学学报. 2020(05): 1314-1322 . 本站查看
    6. 孔令发,董义道,刘伟. 全局方向模板对非结构有限体积梯度与高阶导数重构的影响. 力学学报. 2020(05): 1334-1349 . 本站查看

    Other cited types(4)

Catalog

    Article Metrics

    Article views (927) PDF downloads (168) Cited by(10)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return