Citation: | Hao Qi, Qiao Jichao. Stress relaxation dynamics for amorphous alloys based on the evolution of microstructural heterogeneity. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(11): 3058-3067. DOI: 10.6052/0459-1879-22-255 |
[1] |
王云江, 魏丹, 韩懂等. 非晶态固体的结构可以决定性能吗? 力学学报, 2020, 52(2): 1-15 (Wang Yunjiang, Wei Dan, Han Dong, et al. Does structure determine property in amorphous solids? Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 1-15 (in Chinese)
|
[2] |
乔吉超, 张浪渟, 童钰等. 基于微观结构非均匀性的非晶合金力学行为. 力学进展, 2022, 52(1): 117-152 (Qiao Jichao, Zhang Langting, Tong Yu, et al. Mechancial properties of amorphous alloys: In the framework of the microstructure heterogeneity. Advances in Mechanics, 2022, 52(1): 117-152 (in Chinese) doi: 10.6052/1000-0992-21-038
|
[3] |
Wang WH. The elastic properties, elastic models and elastic perspectives of metallic glasses. Progress in Materials Science, 2012, 57(3): 487-656 doi: 10.1016/j.pmatsci.2011.07.001
|
[4] |
Inoue A, Takeuchi A. Recent development and application products of bulk glassy alloys. Acta Materialia, 2011, 59(6): 2243-2267 doi: 10.1016/j.actamat.2010.11.027
|
[5] |
Khmich A, Hassani A, Sbiaai K, et al. Tuning of mechanical properties of Tantalum-based metallic glasses. International Journal of Mechanical Sciences, 2021, 204: 106546
|
[6] |
Sun BA, Song KK, Pauly S, et al. Transformation-mediated plasticity in CuZr based metallic glass composites: A quantitative mechanistic understanding. International Journal of Plasticity, 2016, 85: 34-51 doi: 10.1016/j.ijplas.2016.06.004
|
[7] |
Zhou HF, Qu SX, Yang W. An atomistic investigation of structural evolution in metallic glass matrix composites. International Journal of Plasticity, 2013, 44: 147-160 doi: 10.1016/j.ijplas.2013.01.002
|
[8] |
Jiang MQ, Ling Z, Meng JX, et al. Energy dissipation in fracture of bulk metallic glasses via inherent competition between local softening and quasi-cleavage. Philosophical Magazine, 2008, 88(3): 407-426 doi: 10.1080/14786430701864753
|
[9] |
Jiang MQ, Wilde G, Dai LH. Origin of stress overshoot in amorphous solids. Mechanics of Materials, 2015, 81: 72-83 doi: 10.1016/j.mechmat.2014.10.002
|
[10] |
Argon A. Plastic deformation in metallic glasses. Acta Metallurgica, 1979, 27(1): 47-58 doi: 10.1016/0001-6160(79)90055-5
|
[11] |
Cheng YT, Hao Q, Pelletier JM, et al. Modelling and physical analysis of the high-temperature rheological behavior of a metallic glass. International Journal of Plasticity, 2021, 146: 103107
|
[12] |
汪卫华. 非晶态物质的本质和特性. 物理学进展, 2013, 33(5): 4-178 (Wang Weihua. The nature and properties of amorphous mater. Progress in Physics, 2013, 33(5): 4-178 (in Chinese)
|
[13] |
Hao Q, Lyu GJ, Pineda E, et al. A hierarchically correlated flow defect model for metallic glass: Universal understanding of stress relaxation and creep. International Journal of Plasticity, 2022, 154: 103288 doi: 10.1016/j.ijplas.2022.103288
|
[14] |
Qiao JC, Wang Q, Pelletier JM, et al. Structural heterogeneities and mechanical behavior of amorphous alloys. Progress in Materials Science, 2019, 104: 250-329 doi: 10.1016/j.pmatsci.2019.04.005
|
[15] |
Liu YH, Wang D, Nakajima K, et al. Characterization of nanoscale mechanical heterogeneity in a metallic glass by dynamic force microscopy. Physical Review Letters, 2011, 106(12): 125504 doi: 10.1103/PhysRevLett.106.125504
|
[16] |
Yang Y, Zhou J, Zhu F, et al. Determining the three-dimensional atomic structure of an amorphous solid. Nature, 2021, 592(7852): 60-64 doi: 10.1038/s41586-021-03354-0
|
[17] |
Nomoto K, Ceguerra AV, Gammer C, et al. Medium-range order dictates local hardness in bulk metallic glasses. Materials Today, 2021, 44: 48-57 doi: 10.1016/j.mattod.2020.10.032
|
[18] |
Zhu F, Song SX, Reddy KM, et al. Spatial heterogeneity as the structure feature for structure–property relationship of metallic glasses. Nature Communications, 2018, 9(1): 3965 doi: 10.1038/s41467-018-06476-8
|
[19] |
Cheng YQ, Ma E. Atomic-level structure and structure-property relationship in metallic glasses. Progress in Materials Science, 2011, 56(4): 379-473 doi: 10.1016/j.pmatsci.2010.12.002
|
[20] |
Tang CG, Harrowell P. Anomalously slow crystal growth of the glass-forming alloy CuZr. Nature Materials, 2013, 12(6): 507-511 doi: 10.1038/nmat3631
|
[21] |
Wagner H, Bedorf D, Küchemann S, et al. Local elastic properties of a metallic glass. Nature Materials, 2011, 10(6): 439-442 doi: 10.1038/nmat3024
|
[22] |
Fujita T, Guan PF, Sheng HW, et al. Coupling between chemical and dynamic heterogeneities in a multicomponent bulk metallic glass. Physical Review B, 2010, 81(14): 140204 doi: 10.1103/PhysRevB.81.140204
|
[23] |
Zhu ZG, Wen P, Wang DP, et al. Characterization of flow units in metallic glass through structural relaxations. Journal of Applied Physics, 2013, 114(8): 083512 doi: 10.1063/1.4819484
|
[24] |
Wang Z, Wang WH. Flow units as dynamic defects in metallic glassy materials. National Science Review, 2019, 6(2): 304-323 doi: 10.1093/nsr/nwy084
|
[25] |
Turnbull D, Cohen MH. On the free-volume model of the liquid-glass transition. The Journal of Chemical Physics, 1970, 52(6): 3038-3041 doi: 10.1063/1.1673434
|
[26] |
Perez J. Quasi-punctual defects in vitreous solids and liquid-glass transition. Solid State Ionics, 1990, 39(1): 69-79
|
[27] |
Cheng YT, Hao Q, Qiao JC, et al. Effect of minor addition on dynamic mechanical relaxation in ZrCu-based metallic glasses. Journal of Non-Crystalline Solids, 2021, 553: 120496 doi: 10.1016/j.jnoncrysol.2020.120496
|
[28] |
Spaepen F. A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metallurgica, 1977, 25(4): 407-415 doi: 10.1016/0001-6160(77)90232-2
|
[29] |
Falk ML, Langer JS. Dynamics of viscoplastic deformation in amorphous solids. Physical Review E, 1998, 57(6): 7192-7205 doi: 10.1103/PhysRevE.57.7192
|
[30] |
Yang Y, Zeng JF, Volland A, et al. Fractal growth of the dense-packing phase in annealed metallic glass imaged by high-resolution atomic force microscopy. Acta Materialia, 2012, 60(13-14): 5260-5272 doi: 10.1016/j.actamat.2012.06.025
|
[31] |
Ke HB, Zeng JF, Liu C T, et al. Structure Heterogeneity in Metallic Glass: Modeling and Experiment. Journal of Materials Science and Technology, 2014, 30(6): 560-565 doi: 10.1016/j.jmst.2013.11.014
|
[32] |
Wang WH. Dynamic relaxations and relaxation-property relationships in metallic glasses. Progress in Materials Science, 2019, 106: 100561 doi: 10.1016/j.pmatsci.2019.03.006
|
[33] |
Hao Q, Qiao JC, Goncharova EV, et al. Thermal effects and evolution of the defect concentration based on shear modulus relaxation data in a Zr-based metallic glass. Chinese Physics B, 2020, 29(8): 086402 doi: 10.1088/1674-1056/ab969c
|
[34] |
Debye P. Polar Molecules. New York: Chemical Catalog Company, 1929
|
[35] |
Jiao W, Wen P, Peng HL, et al. Evolution of structural and dynamic heterogeneities and activation energy distribution of deformation units in metallic glass. Applied Physics Letters, 2013, 102(10): 101903 doi: 10.1063/1.4795522
|
[36] |
Taub A, Spaepen F. Ideal elastic, anelastic and viscoelastic deformation of a metallic glass. Journal of Materials Science, 1981, 16(11): 3087-3092 doi: 10.1007/BF00540316
|
[37] |
Schuh CA, Hufnagel TC, Ramamurty U. Mechanical behavior of amorphous alloys. Acta Materialia, 2007, 55(12): 4067-4109 doi: 10.1016/j.actamat.2007.01.052
|
[38] |
Ye JC, Lu J, Liu CT, et al. Atomistic free-volume zones and inelastic deformation of metallic glasses. Nature Materials, 2010, 9(8): 619-623 doi: 10.1038/nmat2802
|
[39] |
Atzmon M, Ju JD. Microscopic description of flow defects and relaxation in metallic glasses. Physical Review E, 2014, 90(4): 042313 doi: 10.1103/PhysRevE.90.042313
|
[40] |
Liu ZY, Yang Y. A mean-field model for anelastic deformation in metallic-glasses. Intermetallics, 2012, 26: 86-90 doi: 10.1016/j.intermet.2012.03.052
|
[41] |
Casalini R, Roland CM. Aging of the secondary relaxation to probe structural relaxation in the glassy state. Physical Review Letters, 2009, 102(3): 035701 doi: 10.1103/PhysRevLett.102.035701
|
[42] |
Palmer RG, Stein DL, Abrahams E, et al. Models of hierarchically constrained dynamics for glassy relaxation. Physical Review Letters, 1984, 53(10): 958-961 doi: 10.1103/PhysRevLett.53.958
|
[43] |
Perez J. Physics and Mechanics of Amorphous Polymers. CRC Press, 1998
|
1. |
杜一鸣,麻彤,邱福生,陈祖昌. 国家数值风洞风雷软件结构/非结构混合网格同构计算特性. 气动研究与试验. 2024(05): 22-39 .
![]() | |
2. |
陈江涛,肖维,赵炜,张培红,杨福军,金韬,郭勇颜,吴晓军,陈坚强,王瑞利,李立. 计算流体力学验证与确认研究进展. 力学进展. 2023(03): 626-660 .
![]() | |
3. |
李鲁彦,李醒飞,姜明波,杨少波. 深海自持式剖面浮标水动力特性分析. 海洋湖沼通报. 2021(04): 46-54 .
![]() | |
4. |
黄灿,刘青泉,王晓亮. 梯级溃坝洪水洪峰增强机制. 力学学报. 2020(03): 645-655 .
![]() | |
5. |
陈林烽. 基于Navier-Stokes方程残差的隐式大涡模拟有限元模型. 力学学报. 2020(05): 1314-1322 .
![]() | |
6. |
孔令发,董义道,刘伟. 全局方向模板对非结构有限体积梯度与高阶导数重构的影响. 力学学报. 2020(05): 1334-1349 .
![]() |