Citation: | Qiu Rundi, Wang Jingzhu, Huang Renfang, Du Tezhuan, Wang Yiwei, Huang Chenguang. The application of modified physics-informed neural networks in Rayleigh-Taylor instability. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(8): 2224-2234. DOI: 10.6052/0459-1879-22-253 |
[1] |
Magnaudet J, Mercier MJ. Particles, drops, and bubbles moving across sharp interfaces and stratified layers. Annual Review of Fluid Mechanics, 2020, 52(1): 61-91 doi: 10.1146/annurev-fluid-010719-060139
|
[2] |
Ruspini LC, Marcel CP, Clausse A. Two-phase flow instabilities: A review. International Journal of Heat and Mass Transfer, 2014, 71: 521-548 doi: 10.1016/j.ijheatmasstransfer.2013.12.047
|
[3] |
Sui Y, Ding H, Spelt PDM. Numerical simulations of flows with moving contact lines. Annual Review of Fluid Mechanics, 2014, 46(1): 97-119 doi: 10.1146/annurev-fluid-010313-141338
|
[4] |
Huang B, Qiu SC, Li XB, et al. A review of transient flow structure and unsteady mechanism of cavitating flow. Journal of Hydrodynamics, 2019, 31(3): 429-444 doi: 10.1007/s42241-019-0050-0
|
[5] |
郭子漪, 李凯, 康琦等. 界面张力梯度驱动对流向湍流转捩的研究. 力学进展, 2021, 51(1): 1-28 doi: 10.6052/1000-0992-20-022
Guo Ziyi, Li Kai, Kang Qi et. al. Study on bifurcation to chaos of surface tension gradient driven flow. Advances in Mechanics, 2021, 51(1): 1-28 (in Chinese) doi: 10.6052/1000-0992-20-022
|
[6] |
李康, 刘娜, 何志伟等. 一种基于双界面函数的界面捕捉方法. 力学学报, 2017, 49(6): 1290-1300 doi: 10.6052/0459-1879-17-210
Li Kang, Liu Na, He Zhiwei et. al. A new interface capturing method based on double interface functions. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(6): 1290-1300 (in Chinese) doi: 10.6052/0459-1879-17-210
|
[7] |
Hirt CW, Nichols BD. Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics, 1981, 39(1): 201-225 doi: 10.1016/0021-9991(81)90145-5
|
[8] |
Sethian JA, Smereka P. Level set methods for fluid interfaces. Annual Review of Fluid Mechanics, 2003, 35(1): 341-372 doi: 10.1146/annurev.fluid.35.101101.161105
|
[9] |
Sussman M, Smereka P, Osher S. A level set approach for computing solutions to incompressible two-phase flow. Journal of Computational Physics, 1994, 114(1): 146-159 doi: 10.1006/jcph.1994.1155
|
[10] |
Anderson DM, Mcfadden GB, Wheeler AA. Diffuse-interface methods in fluid mechanics. Annual Review of Fluid Mechanics, 1998, 30(1): 139-165 doi: 10.1146/annurev.fluid.30.1.139
|
[11] |
Gurtin ME, Polignone D, ViÑals J. Two-phase binary fluids and immiscible fluids described by an order parameter. Mathematical Models and Methods in Applied Sciences, 1996, 6: 815-831 doi: 10.1142/S0218202596000341
|
[12] |
Qiao L, Zeng Z, Xie HQ, et al. Modeling thermocapillary migration of interfacial droplets by a hybrid lattice Boltzmann finite difference scheme. Applied Thermal Engineering, 2018, 131: 910-919 doi: 10.1016/j.applthermaleng.2017.12.034
|
[13] |
Yue PT. Thermodynamically consistent phase-field modelling of contact angle hysteresis. Journal of Fluid Mechanics, 2020, 899: A15 doi: 10.1017/jfm.2020.465
|
[14] |
Taylor GI. The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1950, 201(1065): 192-196
|
[15] |
Rayleigh R. Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density. Proceedings of the London Mathematical Society, 1882, 1(1): 170-177
|
[16] |
Zhao Z, Wang P, Liu N, et al. Analytical model of nonlinear evolution of single-mode Rayleigh–Taylor instability in cylindrical geometry. Journal of Fluid Mechanics, 2020, 900: A24
|
[17] |
Zhang TW, Wu J, Lin XJ. An interface-compressed diffuse interface method and its application for multiphase flows. Physics of Fluids, 2019, 31(12): 122102 doi: 10.1063/1.5116035
|
[18] |
赵暾, 周宇, 程艳青等. 基于内嵌物理机理神经网络的热传导方程的正问题及逆问题求解. 空气动力学学报, 2021, 39(5): 19-26 doi: 10.7638/kqdlxxb-2020.0176
Zhao Tun, Zhou Yu, Cheng Yanqing et. al. Solving forward and inverse problems of the heat conduction equation using physics-informed neural networks. Acta Aerodynamica Sinica, 2021, 39(5): 19-26(in Chinese)) doi: 10.7638/kqdlxxb-2020.0176
|
[19] |
陆志彬, 瞿景辉, 刘桦等. 基于物理信息神经网络的传热过程物理场代理模型的构建. 化工学报, 2021, 72(3): 1496-1503
Lu Zhibin, Qu Jinghui, Liu Hua et. al. Surrogate modeling for physical fields of heat transfer processes based on physics-informed neural network. CIESC Journal, 2021, 72(3): 1496-1503(in Chinese))
|
[20] |
金晓威, 赖马树金, 李惠. 物理增强的流场深度学习建模与模拟方法. 力学学报, 2021, 53(10): 2616-2629 doi: 10.6052/0459-1879-21-373
Jin Xiaowei, Laima Shujin, Li Hui. Physics-enhanced deep learning methods for modelling and simulating flow fields. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(10): 2616-2629(in Chinese)) doi: 10.6052/0459-1879-21-373
|
[21] |
Karniadakis GE, Kevrekidis IG, Lu L, et al. Physics-informed machine learning. Nature Reviews Physics, 2021, 3(6): 422-440 doi: 10.1038/s42254-021-00314-5
|
[22] |
Raissi M, Perdikaris P, Karniadakis GE. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational physics, 2019, 378: 686-707 doi: 10.1016/j.jcp.2018.10.045
|
[23] |
Raissi M, Yazdani A, Karniadakis GE. Hidden fluid mechanics: Learning velocity and pressure fields from flow visualizations. Science, 2020, 367(6481): 1026-1030 doi: 10.1126/science.aaw4741
|
[24] |
Cai SZ, Wang ZC, Fuest F, et al. Flow over an espresso cup: inferring 3-D velocity and pressure fields from tomographic background oriented Schlieren via physics-informed neural networks. Journal of Fluid Mechanics, 2021, 915: A102 doi: 10.1017/jfm.2021.135
|
[25] |
Buhendwa AB, Adami S, Adams NA. Inferring incompressible two-phase flow fields from the interface motion using physics-informed neural networks. Machine Learning with Applications, 2021, 4: 100029 doi: 10.1016/j.mlwa.2021.100029
|
[26] |
Qiu RD, Huang RF, Xiao Y, et al. Physics-informed neural networks for phase-field method in two-phase flow. Physics of Fluids, 2022, 34(5): 052109 doi: 10.1063/5.0091063
|
[27] |
Lyu LY, Zhang Z, Chen MX, et al. MIM: A deep mixed residual method for solving high-order partial differential equations. Journal of Computational Physics, 2022, 452: 110930 doi: 10.1016/j.jcp.2021.110930
|
[28] |
Kingma DP, Ba J. Adam: A method for stochastic optimization. arXiv, 2014: 1412.6980
|
[29] |
Glorot X, Bengio Y. Understanding the difficulty of training deep feedforward neural networks//Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, 2010: 249-256
|
[30] |
Wight CL, Zhao J. Solving Allen-Cahn and Cahn-Hilliard equations using the adaptive physics informed neural networks. Communications in Computational Physics, 2021, 29(3): 930-954 doi: 10.4208/cicp.OA-2020-0086
|
[31] |
Tryggvason G. Numerical simulations of the Rayleigh-Taylor instability. Journal of Computational Physics, 1988, 75(2): 253-282 doi: 10.1016/0021-9991(88)90112-X
|
[32] |
Huang ZY, Lin G, Ardekani AM. Consistent, essentially conservative and balanced-force phase-field method to model incompressible two-phase flows. Journal of Computational Physics, 2020, 406: 109192 doi: 10.1016/j.jcp.2019.109192
|
[33] |
Xiao Y, Zeng Z, Zhang L, et al. A spectral element-based phase field method for incompressible two-phase flows. Physics of Fluids, 2022, 34(2): 022114 doi: 10.1063/5.0077372
|
1. |
王美琪,曾思恒,李源,刘鹏飞. 二自由度磁浮列车悬浮系统时滞控制研究. 西南交通大学学报. 2024(04): 812-822 .
![]() | |
2. |
周碧柳,靳艳飞. 高斯色噪声和谐波激励共同作用下耦合SD振子的混沌研究. 力学学报. 2022(07): 2030-2040 .
![]() | |
3. |
郭筱瑛,周英姿,王利华,王诗心. 具有随机黏性阻尼的分数维线性振荡器中的随机多共振. 电工技术学报. 2021(03): 532-541 .
![]() | |
4. |
靳艳飞,王贺强. 加性和乘性三值噪声激励下周期势系统的动力学分析. 力学学报. 2021(03): 865-873 .
![]() | |
5. |
朱建渠,金炜东,郭锋. 乘性噪声作用下延迟分数阶系统中的随机共振. 西南交通大学学报. 2021(02): 363-370 .
![]() | |
6. |
张婉洁,牛江川,申永军,杨绍普,王丽. 一类阻尼控制半主动隔振系统的解析研究. 力学学报. 2020(06): 1743-1754 .
![]() | |
7. |
吴晗,曾晓辉,史禾慕. 考虑间隙反馈控制时滞的磁浮车辆稳定性研究. 力学学报. 2019(02): 550-557 .
![]() | |
8. |
芮珍梅,陈建兵. 加性非平稳激励下结构速度响应的FPK方程降维. 力学学报. 2019(03): 922-931 .
![]() | |
9. |
蓝昱群,关利南,古华光. 负反馈诱发神经电振荡的反常现象的复杂动力学. 力学学报. 2019(04): 1122-1133 .
![]() | |
10. |
邢子康,申永军,李向红. 接地式三要素型动力吸振器性能分析. 力学学报. 2019(05): 1466-1475 .
![]() |