EI、Scopus 收录
中文核心期刊
Duan Shuyong, Duan Haodong, Han Xu, Li Changluo, Ouyang Heng, Li Yule, Liu Guirong. Inverse of key parameters of nonlinear friction model of robot joints. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(11): 3189-3202. DOI: 10.6052/0459-1879-22-252
Citation: Duan Shuyong, Duan Haodong, Han Xu, Li Changluo, Ouyang Heng, Li Yule, Liu Guirong. Inverse of key parameters of nonlinear friction model of robot joints. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(11): 3189-3202. DOI: 10.6052/0459-1879-22-252

INVERSE OF KEY PARAMETERS OF NONLINEAR FRICTION MODEL OF ROBOT JOINTS

  • Received Date: June 05, 2022
  • Accepted Date: August 28, 2022
  • Available Online: August 29, 2022
  • An accurate description of nonlinear friction of robot joints has important theoretical and scientific significance for improving trajectory accuracy, positioning accuracy and reliability of robot. However, the robot joints usually contain the motors, reducers, actuators and sensors, which are complex electromechanical coupling system. With the change of service time and working conditions, the friction parameters of robot joints also have significant time-varying effect, which is difficult to accurately describe, resulting in the decrease of trajectory accuracy and great difficulty for robot precision maintenance in the later stage. Therefore, this paper quantitatively evaluates the influence of friction parameters on the output torque of the robot, and proposes an inverse method for nonlinear friction parameters of the robot joints considering time-varying effects. Firstly, a general nonlinear friction model of the robot joint is established. The robot joint constant speed tracking experiment was designed, and the data collected by the experiment were processed by the Kalman filter. Then the relationship between the joint velocity and the driving motor current was established, and the general nonlinear friction model of the joint was established. Secondly, the key parameters of nonlinear friction model are selected. The dynamics model of robot containing nonlinear friction was established. The joint torques were calculated based on the excitation trajectory, and the friction parameters with high sensitivity to joint torques were selected for sensitivity analysis. Thirdly, a data set corresponding to the joint output torque and friction parameters is established. The friction parameter value space was constructed based on the actual working conditions, and the optimal Latin hypercube method was used to sample the friction parameters, which were substituted into the robot dynamics model to calculate the corresponding torques, and the one-to-one data set corresponding to the joint output torques and friction parameters were obtained. Finally, the inverse problem neural network is established and trained, and the key parameters of the nonlinear friction model are reversed and verified. The results illustrate that the accurate description of nonlinear joint friction reduces the influence of friction moment mutation on the trajectory of the robot, and significantly improves the trajectory accuracy.
  • [1]
    任永杰, 尹仕斌, 邾继贵. 面向现代柔性制造的工业机器人高精度控制方法. 航空制造技术, 2018, 61(5): 16-21 (Ren Yongjie, Yin Shibin, Zhu Jigui. High precision control method of industrial robot for modern flexible manufacturing. Aeronautical Manufacturing Technology| Aeron Manuf Technol, 2018, 61(5): 16-21 (in Chinese)
    [2]
    李云仕, 方华, 石安等. Delta机器人在精密3 C制造领域中的应用. 中国高新科技, 2021(10): 45-46 (Li Yunshi, Fang Hua, Shi An, et al. Application of delta robot in precision 3 C manufacturing. China High-Tech, 2021(10): 45-46 (in Chinese)
    [3]
    李治非, 杨阳, 苏月等. 我国外科手术机器人研究应用现状与思考. 中国医学装备, 2019, 16(11): 177-181 (Li Zhifei, Yang Yang, Su Yue, et al. Current status and thinking of research and application of surgical robots in China. China Medical Equipment, 2019, 16(11): 177-181 (in Chinese) doi: 10.3969/J.ISSN.1672-8270.2019.11.046
    [4]
    彭君杰. 空间机械臂低速运动优化研究. [硕士论文]. 北京邮电大学, 2016

    Peng Junjie. Reaearch on low speed motion optimization of space manipulator. [Master Thesis]. Beijing: Beijing University of Posts and Telecommunications, 2016 (in Chinese))
    [5]
    段书用, 李昌洛, 韩旭等. 机械臂动力学分析及关节非线性摩擦模型建立. 机械工程学报, 2020, 56(9): 11 (Duan Shuyong, Li Changluo, Han Xu, et al. Forward-inverse dynamics analysis of robot arm trajectories and development of a nonlinear friction model for robot Joints. Journal of Mechanical Engineering, 2020, 56(9): 11 (in Chinese)
    [6]
    丁千, 翟红梅. 机械系统摩擦动力学研究进展. 力学进展, 2013, 43(1): 112-131 (Ding Qian, Zhai Hongmei. The advance in researches of friction dynamics in mechanics system. Advances in Mechanics, 2013, 43(1): 112-131 (in Chinese) doi: 10.6052/1000-0992-12-039
    [7]
    刘丽兰, 刘宏昭, 吴子英等. 机械系统中摩擦模型的研究进展. 力学进展, 2008, 2: 201-213 (Liu Lilan, Liu Hongzhao, Wu Ziying, et al. An overview of friction models in mechanical systems. Advances in Mechanics, 2008, 2: 201-213 (in Chinese) doi: 10.3321/j.issn:1000-0992.2008.02.006
    [8]
    山显雷, 程刚. 考虑关节摩擦的3 SPS + 1 PS并联机构显示动力学建模研究. 机械工程学报, 2017, 53(1): 28-35 (Shan Xianlei, Cheng Gang. Explicit dynamic modeling of a 3 SPS + 1 PS parallel manipulator with joint friction. Journal of Mechanical Engineering, 2017, 53(1): 28-35 (in Chinese) doi: 10.3901/JME.2017.01.028
    [9]
    程青松, 罗磊, 徐啸顺等. 基于傅里叶级数关节激励轨迹的iiwa动力学参数辨识. 机电一体化, 2018, 24(5): 23-30 (Cheng Qingsong, Luo Lei, Xu Xiaoshun, et al. Iiwa dynamics identification based on optimal fourier series joint excitation trajectory. Mechatronics, 2018, 24(5): 23-30 (in Chinese) doi: 10.16413/j.cnki.issn.1007-080x.2018.05.004
    [10]
    张彦斐, 金鹏, 宫金良等. 3-RPS并联机器人粘性摩擦工况动力学建模. 农业机械学报, 2018, 49(9): 374-381 (Zhang Yanfei, Jin Peng, Gong Jinliang, et al. Dynamic modeling of 3-RPS parallel robot considering joint friction. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(9): 374-381 (in Chinese) doi: 10.6041/j.issn.1000-1298.2018.09.044
    [11]
    陶岳, 赵飞, 曹巨江. 协作机器人关节摩擦特性辨识与补偿技术. 组合机床与自动化加工技术, 2019, 4: 28-31 (Tao Yue, Zhao Fei, Cao Jujiang. Research on friction characteristics identification and compensation of cooperative robot's joints. Modular Machine Tool & Automatic Manufacturing Technique, 2019, 4: 28-31 (in Chinese) doi: 10.13462/j.cnki.mmtamt.2019.04.007
    [12]
    Bo LC, Pavelescu D. The friction-speed relation and its influence on the critical velocity of stick-slip motion. Wear, 1982, 82(3): 277-289 doi: 10.1016/0043-1648(82)90223-X
    [13]
    Ge SS, Lee TH, Ren SX. Adaptive friction compensation of servo mechanisms. International Journal of Systems Science, 2001, 32(4): 523-532 doi: 10.1080/00207720119378
    [14]
    De Wit CC, Olsson H, Astrom KJ, et al. A new model for control of systems with friction. IEEE Transactions on Automatic Control, 1995, 40(3): 419-425 doi: 10.1109/9.376053
    [15]
    张铁, 胡亮亮, 邹焱飚. 基于混合遗传算法的机器人改进摩擦模型辨识. 浙江大学学报(工学版), 2021, 55(5): 801-809, 854 (Zhang Tie, Hu Liangliang, Zou Yanbiao. Identification of improved friction model for robot based on hybrid genetic algorithm. Journal of Zhejiang University (Engineering Science), 2021, 55(5): 801-809, 854 (in Chinese)
    [16]
    Kermani MR, Wong M, Patel RV, et al. Friction compensation in low and high-reversal-velocity manipulators//Proceedings of the Robotics and Automation. IEEE International Conference on Robotics and Automation, New Orleans, USA, 2004. IEEE, 2004, 5: 4320-4325
    [17]
    陈光胜, 李郝林. 数控机床伺服系统摩擦的非线性参数辨识研究. 制造技术与机床, 2012, 8: 63-65 (Chen Guangsheng, Li Haolin. Research on non-linear parameters identification for servo system of CNC machine tools. Manufacturing Technology & Machine Tool, 2012, 8: 63-65 (in Chinese)
    [18]
    孙若怀. 柔性协作机器人关节摩擦辨识. 电子测试, 2021(20): 48-49, 59 (Sun Ruohuai. Joint friction identification of flexible cooperative robot. Electronic Test, 2021(20): 48-49, 59 (in Chinese) doi: 10.3969/j.issn.1000-8519.2021.20.018
    [19]
    张铁, 李秋奋, 邹焱飚. 轻载机器人动力学参数辨识中的关节摩擦力辨识. 润滑与密封, 2020, 45(7): 1-7 (Zhang Tie, Li Qiufen, Zou Yanbiao. Joint friction identification in dynamic identification of light-load industrial robots. Lubrication Engineering, 2020, 45(7): 1-7 (in Chinese) doi: 10.3969/j.issn.0254-0150.2020.07.001
    [20]
    崔靖凯, 赛华阳, 张恩阳等. 基于灰狼算法的模块化关节摩擦辨识和补偿. 光学精密工程, 2021, 29(11): 2683-2691 (Cui Jingkai, Sai Huayang, Zhang Enyang, et al. Identification and compensation of friction for modular joints based on grey wolf optimizer. Optics and Precision Engineering, 2021, 29(11): 2683-2691 (in Chinese) doi: 10.37188/OPE.20212911.2683
    [21]
    石崟, 尹华川, 李俊阳等. 谐波减速器摩擦特性建模及参数辨识. 东北大学学报(自然科学版), 2022, 43(1): 89-96, 110 (Shi Yin, Yin Huachuan, Li Junyang, et al. Modeling and parameter identification of friction characteristics of harmonic reducer. Journal of Northeastern University (Natural Science), 2022, 43(1): 89-96, 110 (in Chinese)
    [22]
    李国丽, 李浩霖, 王群京等. 永磁球形电机Stribeck摩擦模型参数辨识. 电机与控制学报, 2022, 26(4): 121-130 (Li Guoli, Li Haolin, Wang Qunjing, et al. Stribeck friction model parameter identification for a permanent-magnet spherical motor. Electric Machines and Control, 2022, 26(4): 121-130 (in Chinese)
    [23]
    Tu X, Zhou YF, Zhao P, et al. Modeling the static friction in a robot joint by genetically optimized BP neural network. Journal of Intelligent and Robotic Systems, 2019, 94(1): 29-41 doi: 10.1007/s10846-018-0796-6
    [24]
    刘海荣, 刘金琨. Lugre摩擦模型的模糊神经网络辨识仿真研究. 计算机仿真, 2019, 16(11): 177-181 (Liu Hairong, Liu Jinkun. Simulation of fuzzy neural network identification with Lugre friction model. Computer Simulation, 2019, 16(11): 177-181 (in Chinese)
    [25]
    Duan SY, Wang L, Wang F, et al. A technique for inversely identifying joint stiffnesses of robot arms via two-way TubeNets. Inverse Problems in Science and Engineering, 2021, 29(13): 3041-3061 doi: 10.1080/17415977.2021.1967344
    [26]
    Duan SY, Shi LT, Wng L, et al. An uncertainty inversion technique using two-way neural network for parameter identification of robot arms. Inverse Problems in Science and Engineering, 2021, 29(13): 3279-3304 doi: 10.1080/17415977.2021.1988589
    [27]
    Hao L, Pagan R, Beschi M, et al. Dynamic and friction parameters of an industrial robot: Identification, comparison and repetitiveness analysis. Robotics, 2021, 10(1): 49 doi: 10.3390/robotics10010049
    [28]
    Raviola A, Guida R, De Martin A, et al. Effects of temperature and mounting configuration on the dynamic parameters identification of industrial robots. Robotics, 2021, 10(3): 83 doi: 10.3390/robotics10030083
    [29]
    Bachchhav B, Bagch H. Effect of surface roughness on friction and lubrication regimes. Materials Today: Proceedings, 2021, 38: 169-173 doi: 10.1016/j.matpr.2020.06.252
    [30]
    Johanastrom K, Canudas-De-Wit C. Revisiting the LuGre friction model. IEEE Control Systems Magazine, 2008, 28(6): 101-114 doi: 10.1109/MCS.2008.929425
    [31]
    Lahriri S, Santos IF. Experimental quantification of contact forces with impact, friction and uncertainty analysis. Tribology International, 2013, 66: 93-104 doi: 10.1016/j.triboint.2013.04.016
    [32]
    Petrov EP. A sensitivity-based method for stochastic and uncertainty analyses of forced response for nonlinear structures with friction and gap interfaces. Applied Mechanics and Materials, 2006, 5: 443-454
    [33]
    Bittencourt AC, Axelsson P. Modeling and experiment design for identification of wear in a robot joint under load and temperature uncertainties based on friction data. IEEE/ASME Transactions on Mechatronics, 2013, 19(5): 1694-1706
    [34]
    吴晓敏, 刘暾东, 贺苗等. 机器人关节摩擦建模与补偿研究. 仪器仪表学报, 2018, 39(10): 44-50 (Wu Xiaomin, Liu Tundong, He Miao, et al. Research on friction modeling and compensation of robot manipulator. Chinese Journal of Scientific Instrument, 2018, 39(10): 44-50 (in Chinese) doi: 10.19650/j.cnki.cjsi.J1803247
    [35]
    Huang SF, Chen JH, Zhang JW, et al. Robust estimation for an extended dynamic parameter set of serial manipulators and unmodeled dynamics compensation. IEEE/ASME Transactions on Mechatronics, 2022, 27(2): 962-973 doi: 10.1109/TMECH.2021.3076519
    [36]
    李坤龙, 张爱军, 严璐等. 一种改进Dual模型在伺服稳定平台中的应用及扰动补偿. 国外电子测量技术, 2018, 37(1): 97-101 (Li Kunlong, Zhang Aijun, Yan Lu, et al. Improved dual model applying to the servo stable platform and disturbance compensation. Foreign Electronic Measurement Technology, 2018, 37(1): 97-101 (in Chinese)
    [37]
    Yao JY, Jiao ZX, Ma DW. Adaptive Robust Control of DC Motors With Extended State Observer. IEEE Transactions on Industrial Electronics, 2014, 61(7): 3630-3637 doi: 10.1109/TIE.2013.2281165
    [38]
    Craig JJ. Introduction to Robotics: Mechanics and Control. India: Pearson Education, 2005
    [39]
    韩旭. 基于数值模拟的设计理论与方法. 北京: 科学出版社, 2015

    Han Xu. Numerical Simulation-based Design: Theory and Methods. Beijing: Science Press, 2015 (in Chinese))
    [40]
    李洋, 桑建兵, 敖日汗等. 基于仿真和智能算法骨骼肌超弹性本构参数的反演方法研究. 力学学报, 2021, 53(5): 1449-1456 (Li Yang, Sang Jianbing, Ao Rihan, et al. Research on inversion method of hyperelastic constitutive parameters of skeletal muscles based on simulation and intelligent algorithm. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(5): 1449-1456 (in Chinese)
    [41]
    李家铮, 张禹, 赵文川等. 基于递推最小二乘法的SCARA机器人动力学参数辨识研究. 机床与液压, 2021, 49(6): 22-26 (Li Jiazheng, Zhang Yu, Zhao Wenchuan, et al. Resaerach on dynamic parameter identification of scara robot on recursive least squares. Machine Tool & Hydraulics, 2021, 49(6): 22-26 (in Chinese)
    [42]
    Corke PI, Khatib O. Robotics, Vision and Control: Fundamental Algorithms in MATLAB. Berlin: Spinger, 2011
    [43]
    Liu GR. FEA-AI and AI-AI: Two-way deepnets for real-time computations for both forward and inverse mechanics problems. International Journal of Computational Methods, 2019, 16(8): 1950045 doi: 10.1142/S0219876219500452
    [44]
    Liu GR, Ma WB, Han X. An inverse procedure for identification of loads on composite laminates. Composites Part B: Engineering, 2002, 33(6): 425-432 doi: 10.1016/S1359-8368(02)00027-6
    [45]
    Duan SY, Li YL, Wang F, et al. On direct weight inverse approach for identifying composite parameters based on two-way TrumpetNets. Composite Structures, 2022, 286: 115251 doi: 10.1016/j.compstruct.2022.115251
    [46]
    Liu GR, Duan SY, Zhang ZM, et al. TubeNet: A special TrumpetNet for explicit solutions to inverse problems. International Journal of Computational Methods, 2021, 18(1): 2050030 doi: 10.1142/S0219876220500309
    [47]
    吴孟臻, 刘洋, 许向红. 高速弓网系统动力学参数敏度分析及优化. 力学学报, 2021, 53(1): 75-83 (Wu Mengzhen, Liu Yang, Xu Xianghong. Sensitivity analysis and optimization on parameters of high speedpantograp-catenary system. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(1): 75-83 (in Chinese)
    [48]
    涂骁. 基于动力学前馈的工业机器人运动控制关键技术研究. [硕士论文]. 武汉: 华中科技大学, 2018

    Tu Xiao. Research on the key technology of industrial robot motion control based on feedforward dynamics. [Master Thesis]. Wuhan: Huazhong University of Science & Technology, 2018 (in Chinese))
  • Related Articles

    [1]Wu Mengzhen, Liu Yang, Xu Xianghong. SENSITIVITY ANALYSIS AND OPTIMIZATION ON PARAMETERS OF HIGH SPEEDPANTOGRAPH-CATENARY SYSTEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(1): 75-83. DOI: 10.6052/0459-1879-20-207
    [2]Wang Nianhua, Li Ming, Zhang Laiping. ACCURACY ANALYSIS AND IMPROVEMENT OF VISCOUS FLUX SCHEMES IN UNSTRUCTURED SECOND-ORDER FINITE-VOLUME DISCRETIZATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(3): 527-537. DOI: 10.6052/0459-1879-18-037
    [3]Zhu Hehua, Chen Qingy. AN APPROACH FOR PREDICTING THE EFFECTIVE PROPERTIES OF MULTIPHASE COMPOSITE WITH HIGH ACCURACY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(1): 41-47. DOI: 10.6052/0459-1879-16-347
    [4]Niu Wendong, Wang Yanhui, Yang Yanpeng, Zhu Yaqiang, Wang Shuxin. HYDRODYNAMIC PARAMETER IDENTIFICATION OF HYBRID-DRIVEN UNDERWATER GLIDER[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4): 813-822. DOI: 10.6052/0459-1879-16-162
    [5]Xie Yong, Liu Pan, Cai Guoping. PARAMETER IDENTIFICATION OF FLEXIBLE PLATE BASED ON THE ACCELERATION OUTPUT[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(1): 128-135. DOI: 10.6052/0459-1879-13-124
    [6]Sui Yunkang Xuan Donghai Shang Zhen. ICM method with high accuracy approximation for topology optimization of continuum structures[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(4): 716-725. DOI: 10.6052/0459-1879-2011-4-lxxb2010-503
    [7]Ben Xu Jiachun Li. Sensitivity analysis of similarity criterion number and its applications[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(2): 255-266. DOI: 10.6052/0459-1879-2011-2-lxxb2010-313
    [8]Xiuli Du, Jianfeng Zhao, Qiang Han. Accuracy controllable time-domain difference approach to calculate foundation resisting force[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(1): 59-66. DOI: 10.6052/0459-1879-2008-1-2006-162
    [9]STUDY ON HIGH ACCURACY BOUNDARY ALGORITHMS[J]. Chinese Journal of Theoretical and Applied Mechanics, 1996, 28(4): 392-399. DOI: 10.6052/0459-1879-1996-4-1995-347
    [10]LOCAL ANALYSIS OF THE BUCKLING AND INITIAL POST-BUCKLING OF THIN-WALLED STRUCTURES AND ITS ACCURACY[J]. Chinese Journal of Theoretical and Applied Mechanics, 1991, 23(1): 103-109. DOI: 10.6052/0459-1879-1991-1-1995-814

Catalog

    Article Metrics

    Article views (1176) PDF downloads (198) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return