EI、Scopus 收录
中文核心期刊
Gao Shan, Shi Yao, Pan Guang, Quan Xiaobo, Lu Jiewen. Study on the wake vortex instability of the projectile launched underwater. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(9): 2435-2445. DOI: 10.6052/0459-1879-22-245
Citation: Gao Shan, Shi Yao, Pan Guang, Quan Xiaobo, Lu Jiewen. Study on the wake vortex instability of the projectile launched underwater. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(9): 2435-2445. DOI: 10.6052/0459-1879-22-245

STUDY ON THE WAKE VORTEX INSTABILITY OF THE PROJECTILE LAUNCHED UNDERWATER

  • Received Date: May 31, 2022
  • Accepted Date: July 07, 2022
  • Available Online: July 08, 2022
  • In the underwater launch process, the wake of the first projectile has flow interference with the hydrodynamic characteristics of the second projectile. Therefore, the research on the evolution mechanism of the wake vortex is of great significance to solve the problem of flow interference in the single launcher and multiple vehicles launched successively. In this paper, the improved delayed detached eddy simulation model and energy equation, VOF (volume of fluid) multiphase flow model, and overlapping grid technology is used to simulate the wake vortex of the projectile launched underwater. Simulation results are in good agreement with the experiment, which verifies the effectiveness and accuracy of the numerical method. Taking the wake region of the projectile as the key research object, the transient flow field distribution in the wake area is analyzed, the wake vortex is identified and its evolution is analyzed by using the vortex identification method, and the effects of the crossflow intensity and Reynolds number on the evolution of wake vortex and fluctuating pressure distribution are discussed. The results show that the interaction between the high-speed fluid core and the low-speed free flow in the wake region causes obvious Kelvin-Helmholtz instability in the wake. Under the effect of crossflow, the vortex rings shed at the vehicle tail and the vortex leg form a hairpin arc-shaped hairpin vortex. At the same time, a plurality of hairpin vortices is arranged at intervals along the axial direction to form a hairpin vortex package, which exists in the wake. With the increase of crossflow intensity, forming a multi-stage hairpin vortex package. The main reason for the appearance of the secondary peak of fluctuating pressure is the evolution of wake flow. With the increase of Reynolds number, the secondary vortex structure composed of the cylindrical vortex and U-shaped vortex in the wake becomes more and more obvious, and the instability increases.
  • [1]
    许奇, 权晓波, 魏海鹏, 等. 水下推力矢量控制技术研究现状及进展. 兵器装备工程学报, 2022, 43(01): 27-34

    Xu Qi, Quan Xiaobo, Wei Haipeng, et al. Research progress and prospects of underwater thrust vector control technology. Journal of Ordnance Equipment Engineering, 2022, 43(01): 27-34 (in Chinese)
    [2]
    刘超群. Liutex-涡定义和第三代涡识别方法. 空气动力学学报, 2020, 38(03): 413-431

    Liu Chaoqun. Liutex-third generation of vortex definition and identification methods. Acta Aerodynamica Sinica, 2020, 38(03): 413-431 (in Chinese)
    [3]
    Xu H, Wei YJ, Wang C, et al. On wake vortex encounter of axial-symmetric projectiles launched successively underwater. Ocean Engineering, 2019, 189: 106382 doi: 10.1016/j.oceaneng.2019.106382
    [4]
    王畅畅, 王国玉, 黄彪, 等. 可压缩空化流动空穴演化及压力脉动特性实验研究. 力学学报, 2019, 51(05): 1296-1309

    Wang Changchang, Wang Guoyu, Huang Biao, et al. Experimental investigation of cavitation characteristics and dynamics in compressible turbulent cavitating flow. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(05): 1296-1309 (in Chinese)
    [5]
    孙铁志, 魏英杰, 王聪, 等. 空化模型在低温流体空化流动三维计算中的应用与评价. 船舶力学, 2018, 22(01): 22-30 doi: 10.3969/j.issn.1007-7294.2018.01.003

    Sun Tiezhi, Wei Yingjie, Wang Cong, et al. Evaluation of cavitation model in three-dimensional computations of cryogenics liquid cavitating flows. Journal of Ship Mechanics, 2018, 22(01): 22-30 (in Chinese) doi: 10.3969/j.issn.1007-7294.2018.01.003
    [6]
    岳军政, 吴先前, 黄晨光. 航行体出水破冰的多场耦合效应与相似律[J]. 力学学报, 2021, 53(07): 1930-1939 doi: 10.6052/0459-1879-21-082

    Yue Junzheng, Wu Xianqian, Huang Chenguang. Multi-Field coupling effect and similarity law of floation ice break by vehicle launched underwater. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(07): 1930-1939 (in Chinese) doi: 10.6052/0459-1879-21-082
    [7]
    任泽宇, 孙龙泉, 李志鹏, 等. 水下航行体空泡发展及出水溃灭特性实验研究. 宇航总体技术, 2021, 5(01): 42-49

    Ren Zeyu, Sun Longquan, Li Zhipeng, et al. Experimental study on cavitation development and collapse characteristics of underwater vehicle. Astronautical Systems Engineering Technology, 2021, 5(01): 42-49 (in Chinese)
    [8]
    王一伟, 黄晨光, 杜特专, 等. 航行体垂直出水载荷与空泡溃灭机理分析. 力学学报, 2012, 44(01): 39-48 doi: 10.6052/0459-1879-2012-1-lxxb2011-139

    Wang Yiwei, Huang Chenguang, Du Tezhuan, et al. Mechanism analysis about cavitation collapse load of underwater vehicle in a vertical launching process. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(01): 39-48 (in Chinese) doi: 10.6052/0459-1879-2012-1-lxxb2011-139
    [9]
    杜特专, 王一伟, 黄晨光, 等. 航行体水下发射流固耦合效应分析. 力学学报, 2017, 49(04): 782-792 doi: 10.6052/0459-1879-16-401

    Du Tezhuan, Wang Yiwei, Huang Chenguang, et al. Study on coupling effects of underwater launched vehicle. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(04): 782-792 (in Chinese) doi: 10.6052/0459-1879-16-401
    [10]
    王一伟, 黄晨光. 高速航行体水下发射水动力学研究进展. 力学进展, 2018, 48: 201805 doi: 10.6052/1000-0992-16-020

    Wang Yiwei, Huang Chenguang. Research progress on hydrodynamics of high speed vehicles in the underwater launching process. Advances in Mechanics, 2018, 48: 201805 (in Chinese) doi: 10.6052/1000-0992-16-020
    [11]
    尤天庆, 权晓波, 刘元清, 等. 基于势流理论的尾空泡对航行体表面压力影响研究. 船舶力学, 2021, 25(09): 1182-1188 doi: 10.3969/j.issn.1007-7294.2021.09.006

    You Tianqing, Quan Xiaobo, Liu Yuanqing, et al. Effects of tail cavity on pressure distribution of underwater vehicle based on potential flow theory. Journal of Ship Mechanics, 2021, 25(09): 1182-1188 (in Chinese) doi: 10.3969/j.issn.1007-7294.2021.09.006
    [12]
    李永光, 林宗虎. 气液两相涡街稳定性的研究. 力学学报, 1998(02): 10-16 doi: 10.3321/j.issn:0459-1879.1998.02.002

    Li Yongguang, Lin Zonghu. A Study on the stability of gas-liquid two-phase vortex street. Journal of Theoretical and Applied Mechanics, 1998(02): 10-16 (in Chinese) doi: 10.3321/j.issn:0459-1879.1998.02.002
    [13]
    王智慧, 翟红岩, 李庆领, 等. 椭圆柱绕流尾迹的PIV测量及DMD分析[J]. 青岛科技大学学报(自然科学版), 2020, 41(01): 91-96

    Wang Zhihui, Zhai Hongyan, Li Qingling, et al. PIV measurement and DMD analysis of elliptical cylinder’s wake. Journal of Qingdao University of science and Technology (Natural Science Edition) 2020, 41(01): 91-96 (in Chinese)
    [14]
    徐一航, 陈少松. 旋转圆柱绕流流场特性分析. 力学学报, 2021, 53(07): 1900-1911 doi: 10.6052/0459-1879-21-153

    Xu Yihang, Chen Shaosong. Analysis of flow field characteristics around a rotating cylinder. Journal of Theoretical and Applied Mechanics, 2021, 53(07): 1900-1911 (in Chinese) doi: 10.6052/0459-1879-21-153
    [15]
    李聪洲, 张新曙, 胡晓峰, 等. 高雷诺数下多柱绕流特性研究. 力学学报, 2018, 50(02): 233-243 doi: 10.6052/0459-1879-17-346

    Li congzhou, Zhang Xinshu, Hu Xiaofeng, et al. The Study on flow past multiple cylinders at high Reynolds number. Journal of Theoretical and Applied Mechanics, 2018, 50(02): 233-243 (in Chinese) doi: 10.6052/0459-1879-17-346
    [16]
    陈蒋力, 陈少强, 任峰, 等. 基于壁面压力反馈的圆柱绕流减阻智能控制. 物理学报, 2022, 71(08): 210-219

    Chen Jiangli, Chen Shaoqiang, Ren Feng, et al. Artificially intelligent control of drag reduction around a circular cylinder based on wall pressure feedback. ActaPhysica Sinica, 2022, 71(08): 210-219 (in Chinese)
    [17]
    刘二朋, 陈威, 林永水, 等. 不同雷诺数下二维椭圆柱绕流的数值模拟研究[J]. 应用力学学报, 2021, 38(05): 2025-2031

    Liu Erpeng, Chen Wei, Lin Yongshui, et al. Numerical simulation of flow around a two-dimensional elliptic cylinder with different Reynolds numbers. Chinese Journal of Applied Mechanics, 2021, 38(05): 2025-2031 (in Chinese))
    [18]
    郝乐, 陈龙, 倪明玖. 流向磁场作用下圆柱绕流的直接数值模拟. 力学学报, 2020, 52(06): 1645-1654

    Hao Le, Chen Long, Ni Mingjiu. Direct numerical simulation on the turbulent flow past a confined circular with the influence of the streamwise magnetic fields. Journal of Theoretical and Applied Mechanics, 2020, 52(06): 1645-1654 (in Chinese)
    [19]
    高洋洋, 张演明, 刘彩, 等. 不同雷诺数下倾斜圆柱绕流三维数值模拟研究. 海洋工程, 2020, 38(01): 86-100 doi: 10.16483/j.issn.1005-9865.2020.01.009

    Gao Yangyang, Zhang Yanming, Liu Cai, et al. Three-dimensional numerical simulation of flow past inclined circular cylinder at different Reynolds numbers. Ocean Engineering, 2020, 38(01): 86-100 (in Chinese) doi: 10.16483/j.issn.1005-9865.2020.01.009
    [20]
    刘闯, 黄剑峰, 邵晨. 基于LBM-LES的三维串列多圆柱绕流尾涡结构研究. 应用力学学报, 2022, 39(01): 186-194

    Liu Chuang, Huang Jianfeng, Shao Chen. Research on wake structure of three-dimensional tandem multi-cylinder flow based on LBM-LES. Chinese Journal of Applied Mechanics, 2022, 39(01): 186-194 (in Chinese)
    [21]
    端木玉, 万德成. 雷诺数为 3900 时三维圆柱绕流的大涡模拟[J]. 海洋工程, 2016, 34(6): 11-20

    Duan Muyu, Wan Decheng. Large-eddy simulation of the flow past a cylinder with Re=3900. Ocean Engineering, 2016, 34(6): 11-20 (in Chinese)
    [22]
    Zhang W, Zapata MU, Bai X, et al. Three-dimensional simulation of horseshoe vortex and local scour around a vertical cylinder using an unstructured finite-volume technique. International Journal of Sediment Research, 2020, 35(3): 295-306 doi: 10.1016/j.ijsrc.2019.09.001
    [23]
    Chen JG, Zhou Y, Antonia RA, et al. The turbulent Kármán vortex. Journal of Fluid Mechanics, 2019, 871: 92-112 doi: 10.1017/jfm.2019.296
    [24]
    Chen JG, Zhou Y, Antonia RA, et al. Characteristics of the turbulent energy dissipation rate in a cylinder wake. Journal of Fluid Mechanics, 2018, 835: 271-300 doi: 10.1017/jfm.2017.765
    [25]
    Taneda S. Flow field visualization. in: Theoretical and Applied Mechanics, 1985: 399-410
    [26]
    Rosenhead L. Vortex systems in wakes. Advances in Applied Mechanics, 1953, 3: 185-195
    [27]
    夏雪湔, 黄政. 轴对称钝物体的尾涡结构. 力学学报, 1990(03): 347-350

    Xia Xuejian, Huang Zheng. Vortex structure in the wake of the axisymmetric bluff bodies. Journal of Theoretical and Applied Mechanics, 1990(03): 347-350 (in Chinese)
    [28]
    Shi Y, Gao S, Pan G, et al. Simulation of the wake vortex and trajectory characteristics of successively launched multiple projectiles. Ocean Engineering, 2022, 249: 110962 doi: 10.1016/j.oceaneng.2022.110962
    [29]
    Gao S, Shi Y, Pan G, et al. A study on the flow interference characteristics of projectiles successively launched underwater. International Journal of Multiphase Flow, 2022, 151: 104066 doi: 10.1016/j.ijmultiphaseflow.2022.104066
    [30]
    王一伟, 黄晨光, 吴小翠, 等. 航行体水下垂直发射空泡脱落条件研究. 工程力学, 2015, 32(11): 33-39 doi: 10.6052/j.issn.1000-4750.2014.04.0331

    Wang Yiwei, Huang Chenguang, Wu Xiaocui, et al. Investigation of the cavitation shedding condition on underwater vehicles in the vertical launch process. Engineering Mechanics, 2015, 32(11): 33-39 (in Chinese) doi: 10.6052/j.issn.1000-4750.2014.04.0331
    [31]
    Pozrikidis C, Higdon JJ. Nonlinear Kelvin-Helmholtz instability of a finite vortex layer. Journal of Fluid Mechanics, 1985, 157: 225-263
    [32]
    Popiel CO, Trass O. Visualization of a free and impinging round jet. Experimental Thermal and Fluid Science, 1991, 4(3): 253-264 doi: 10.1016/0894-1777(91)90043-Q
    [33]
    Gao S, Shi Y, Pan G, et al. The transient vortex structure in the wake of an axial-symmetric projectile launched underwater. Physics of Fluids, 2022, 34: 065109 doi: 10.1063/5.0095817
    [34]
    姜翼冲. 水下航行体齐射过程流场结构及弹道特性数值研究. [硕士论文]. 哈尔滨: 哈尔滨工业大学, 2019

    Jiang Yichong. Numerical study on the flow field structure and ballistic characteristics in the salvo process of underwater vehicles. [Master Thesis]. Harbin: Harbin Institute of Technology, 2019 (in Chinese)
  • Related Articles

    [1]Qiu Xiang, Wu Haodong, Tao Yizhou, Li Jiahua, Zhou Jiankang, Liu Yulu. EXPERIMENTAL STUDY ON EVOLUTION OF WAKE STRUCTURES IN FLOW PAST THE CIRCULAR CYLINDER PLACED NEAR THE WALL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(11): 3042-3057. DOI: 10.6052/0459-1879-22-403
    [2]Huang Guangjing, Dai Yuting, Yang Chao. PLASMA-BASED FLOW CONTROL ON PITCHING AIRFOIL AT LOW REYNOLDS NUMBER[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(1): 136-155. DOI: 10.6052/0459-1879-20-183
    [3]Bao Yun, Xi Lingchu. PARALLEL DIRECT METHOD OF LES FOR TURBULENT WIND FIELD WITH HIGH REYNOLDS NUMBER[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(3): 656-662. DOI: 10.6052/0459-1879-20-052
    [4]Chen Weilin, Ji Chunning, Xu Dong. GALLOPING IN VORTEX-INDUCED VIBRATION OF THREE TANDEM CYLINDERS AT LOW REYNOLDS NUMBERS AND ITS INFLUENCING FACTORS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(4): 766-775. DOI: 10.6052/0459-1879-18-057
    [5]Li Congzhou, Zhang Xinshu, Hu Xiaofeng, Li Wei, You Yunxiang. THE STUDY OF FLOW PAST MULTIPLE CYLINDERS AT HIGH REYNOLDS NUMBERS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 233-243. DOI: 10.6052/0459-1879-17-346
    [6]Fei Fei, Fan Jing. MOLECULAR SIMULATION OF DRIVEN CAVITY FLOWS WITH HIGH REYNOLDS NUMBER[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(5): 653-659. DOI: 10.6052/0459-1879-13-064
    [7]Tang Wenyue, Hu Guohui. FLOW CHARACTERISTICS OF LIQUID FILMS DRIVEN BY PERIODIC ELECTRO-OSMOSIS IN BIOCHIPS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, (3): 600-606. DOI: 10.6052/0459-1879-2012-3-20120317
    [8]HYDRODYNAMIC FORCES ACTING ON AN ELASTIC CIRCULAR CYLINDERIN COMBINED WAVE AND CURRENT FLOW AT HIGH REYNOLDS NUMBERS[J]. Chinese Journal of Theoretical and Applied Mechanics, 1995, 27(1): 1-9. DOI: 10.6052/0459-1879-1995-1-1995-399
    [9]EXPERIMENTAL RESEARCH FOR FLUID FORCE OF TWO ELASTIC CIRCULAR CYLINDERS IN SIDE BY SIDE ARRANGEMENTS WHEN SUBJECTED TO UNIFORM CROSSFLOW[J]. Chinese Journal of Theoretical and Applied Mechanics, 1994, 26(1): 12-19. DOI: 10.6052/0459-1879-1994-1-1995-517
    [10]SEPARATION FLOW AROUND A CYLINDER IN SHEAR FLOW AT A HIGH REYNOLDS NUMBER[J]. Chinese Journal of Theoretical and Applied Mechanics, 1990, 22(4): 463-467. DOI: 10.6052/0459-1879-1990-4-1995-970

Catalog

    Article Metrics

    Article views (862) PDF downloads (145) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return