Citation: | Hu Yinggang, Jiang Yanqun, Huang Xiaoqian. High order weight compacr nonlinear scheme for time-dependent Hamilton-Jacobi equations. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(11): 3203-3214. DOI: 10.6052/0459-1879-22-233 |
[1] |
刘瑛, 杜光勋, 全权等. 基于Hamilton-Jacobi方程的飞行器机动动作可达集分析. 自动化学报, 2016, 42(3): 347-357 (Liu Ying, Du Guangxun, Quan Quan, et al. Reachability calculation for aircraft maneuver using hamilton-jacobi function. Acta Automatica Sinica, 2016, 42(3): 347-357 (in Chinese) doi: 10.16383/j.aas.2016.c140888
|
[2] |
Chan CK, Lau KS, Zhang BL. Simulation of a premixed turbulent flame with the discrete vortex method. International Journal for Numerical Methods in Engineering, 2000, 48(4): 613-627 doi: 10.1002/(SICI)1097-0207(20000610)48:4<613::AID-NME900>3.0.CO;2-7
|
[3] |
Huang L, Wong SC, Zhang M, et al. Revisiting Hughes’ dynamic continuum model for pedestrian flow and the development of an efficient solution algorithm. Transportation Research Part B:Methodological, 2009, 43(1): 127-141 doi: 10.1016/j.trb.2008.06.003
|
[4] |
Lefèvre V, Garnica A, Lopez-Pamies O. A WENO finite-difference scheme for a new class of Hamilton-Jacobi equations in nonlinear solid mechanics. Computer Methods in Applied Mechanics and Engineering, 2019, 349(1): 17-44
|
[5] |
陈苏婷, 李霞. 非紧空间上折现Hamilton-Jacobi方程的黏性解. 华东师范大学学报, 2022, 2022(2): 9-15 (Chen Suting, Li Xia. The viscosity solution of the discounted Hamilton-Jacobi equation in non-compact space. Proceedings of the National Academy of Sciences, 2022, 2022(2): 9-15 (in Chinese)
|
[6] |
Crandall MG, Lions PL. Viscosity solutions of Hamilton-Jacobi equations. Transactions of the American Mathematical Society, 1983, 277: 1-42 doi: 10.1090/S0002-9947-1983-0690039-8
|
[7] |
Acker F, Borges RBR, Costa B. An improved WENO-Z scheme. Journal of Computational Physics, 2016, 313: 726-753 doi: 10.1016/j.jcp.2016.01.038
|
[8] |
骆信, 吴颂平. 改进的五阶WENO-Z+ 格式. 力学学报, 2019, 51(6): 1927-1939 (Luo Xin, Wu Songping. An improved fifth-order WENO-Z + scheme. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1927-1939 (in Chinese) doi: 10.6052/0459-1879-19-249
|
[9] |
Balsara DS, Shu CW. Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy. Journal of Computational Physics, 2000, 160(2): 405-452 doi: 10.1006/jcph.2000.6443
|
[10] |
Osher S, Sethian JA. Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics, 1988, 79(1): 12-49 doi: 10.1016/0021-9991(88)90002-2
|
[11] |
Jiang GS, Peng D. Weighted ENO schemes for Hamilton-Jacobi equations. SIAM Journal on Scientific Computing, 2000, 21(6): 2126-2143 doi: 10.1137/S106482759732455X
|
[12] |
Bryson S, Levy D. High-order central WENO schemes for multidimensional Hamilton-Jacobi equations. SIAM Journal on Numerical Analysis, 2003, 41(4): 1339-1369 doi: 10.1137/S0036142902408404
|
[13] |
Qiu J, Shu CW. Hermite WENO schemes for Hamilton–Jacobi equations. Journal of Computational Physics, 2005, 204(1): 82-99 doi: 10.1016/j.jcp.2004.10.003
|
[14] |
Ha Y, Kim CH, Yang H, et al. A sixth-order weighted essentially non-oscillatory schemes based on exponential polynomials for Hamilton−Jacobi equations. Journal of Scientific Computing, 2018, 75(3): 1675-1700 doi: 10.1007/s10915-017-0603-8
|
[15] |
Cheng X, Feng J. A sixth-order finite difference WENO scheme for Hamilton−Jacobi equations. International Journal of Computer Mathematics, 2019, 96(3): 568-584 doi: 10.1080/00207160.2018.1447665
|
[16] |
Zhu J, Zheng F, Qiu J. New Finite Difference Hermite WENO Schemes for Hamilton-Jacobi Equations. Journal of Scientific Computing, 2020, 83(1): 1-21 doi: 10.1007/s10915-020-01189-x
|
[17] |
Rathan S. L1-type smoothness indicators based weighted essentially nonoscillatory scheme for Hamilton-Jacobi equations. International Journal for Numerical Methods in Fluids, 2020, 92(12): 1927-1947 doi: 10.1002/fld.4855
|
[18] |
Abedian R. A symmetrical WENO-Z scheme for solving Hamilton−Jacobi equations. International Journal of Modern Physics C, 2020, 31(3): 2050039 doi: 10.1142/S0129183120500394
|
[19] |
Kim CH, Ha Y, Yang H, et al. A third-order WENO scheme based on exponential polynomials for Hamilton-Jacobi equations. Applied Numerical Mathematics, 2021, 165: 167-183 doi: 10.1016/j.apnum.2021.01.020
|
[20] |
Deng X, Zhang H. Developing high-order weighted compact nonlinear schemes. Journal of Computational Physics, 2000, 165(1): 22-44 doi: 10.1006/jcph.2000.6594
|
[21] |
Deng X, Maekawa H. Compact high-order accurate nonlinear schemes. Journal of Computational Physics, 1997, 130(1): 77-91 doi: 10.1006/jcph.1996.5553
|
[22] |
Nonomura T, Fujii K. Effects of difference scheme type in high-order weighted compact nonlinear schemes. Journal of Computational Physics, 2009, 228(10): 3533-3539 doi: 10.1016/j.jcp.2009.02.018
|
[23] |
Zhang S, Jiang S, Shu CW. Development of nonlinear weighted compact schemes with increasingly higher order accuracy. Journal of Computational Physics, 2008, 227(15): 7294-7321 doi: 10.1016/j.jcp.2008.04.012
|
[24] |
Deng X, Jiang Y, Mao M, et al. A family of hybrid cell-edge and cell-node dissipative compact schemes satisfying geometric conservation law. Computers & Fluids, 2015, 116: 29-45
|
[25] |
Nonomura T, Fujii K. Robust explicit formulation of weighted compact nonlinear scheme. Computers & Fluids, 2013, 85: 8-18
|
[26] |
Wong ML, Lele SK. High-order localized dissipation weighted compact nonlinear scheme for shock-and interface-capturing in compressible flows. Journal of Computational Physics, 2017, 339: 179-209 doi: 10.1016/j.jcp.2017.03.008
|
[27] |
Zhao G, Sun M, Xie S, et al. Numerical dissipation control in an adaptive WCNS with a new smoothness indicator. Applied Mathematics and Computation, 2018, 330: 239-253 doi: 10.1016/j.amc.2018.01.019
|
[28] |
洪正, 叶正寅. 各向同性湍流通过正激波的演化特征研究. 力学学报, 2018, 50(6): 1356-1367 (Hong Zheng, Ye Zhengyin. Study on evolution characteristics of isotropic turbulence passing through a normal shock wave. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(6): 1356-1367 (in Chinese) doi: 10.6052/0459-1879-18-129
|
[29] |
Jiang YQ, Zhou SG, Zhang X, et al. High-order weighted compact nonlinear scheme for one-and two-dimensional Hamilton-Jacobi equations. Applied Numerical Mathematics, 2022, 171: 353-368 doi: 10.1016/j.apnum.2021.09.012
|
[30] |
Hiejima T. A high-order weighted compact nonlinear scheme for compressible flows. Computers & Fluids, 2022, 232: 105199
|
[31] |
Jiang YQ, Zhou SG, Zhang X, et al. High order all-speed semi-implicit weighted compact nonlinear scheme for the isentropic Navier–Stokes equations. Journal of Computational and Applied Mathematics, 2022, 411: 114272 doi: 10.1016/j.cam.2022.114272
|
[32] |
Ma Y, Yan ZG, Liu H, et al. Improved weighted compact nonlinear scheme for implicit large-eddy simulations. Computers & Fluids, 2022, 240: 105412
|
[33] |
Gottlieb S, Shu CW, Tadmor E. Strong stability-preserving high-order time discretization methods. SIAM Review, 2001, 43(1): 89-112 doi: 10.1137/S003614450036757X
|
[1] | Zhong Wei, Jia Leiming, Wang Shufei, Tian Zhou. A HIGH-EFFICIENCY AND HIGH-RESOLUTION MAPPED WENO SCHEME AND ITS APPLICATIONS IN THE NUMERICAL SIMULATION OF PROBLEMS WITH COMPLEX FLOWS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(11): 3010-3031. DOI: 10.6052/0459-1879-22-247 |
[2] | Ren Jiong, Wang Gang. A FINITE VOLUME METHOD WITH WALSH BASIS FUNCTIONS TO CAPTURE DISCONTINUITY INSIDE GRID[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(3): 773-788. DOI: 10.6052/0459-1879-20-253 |
[3] | Luo Xin, Wu Songping. AN IMPROVED FIFTH-ORDER WENO-Z+ SCHEME[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1927-1939. DOI: 10.6052/0459-1879-19-249 |
[4] | Wang Zhao, Yan Hong. UNIFIED GAS-KINETIC SCHEME FOR TWO PHASE INTERFACE CAPTURING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(4): 711-721. DOI: 10.6052/0459-1879-17-364 |
[5] | Li Kang, Liu Na, He Zhiwei, Luo Longshan, Tian Baolin. A NEW INTERFACE CAPTURING METHOD BASED ON DOUBLE INTERFACE FUNCTIONS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(6): 1290-1300. DOI: 10.6052/0459-1879-17-210 |
[6] | Qin Wanglong, Lü Hongqiang, Wu Yizhao. HIGH-ORDER DISCONTINUOUS GALERKIN SOLUTION OF N-S EQUATIONS ON HYBRID MESH[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(6): 987-991. DOI: 10.6052/0459-1879-13-151 |
[7] | Liu Yan, Tian Baolin, Shen Weidong. A HIGH RESOLUTION CELL-CENTERED ALE METHOD FOR LARGE DEFORMATION MULTIMATERIAL INTERFACE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(6): 822-832. DOI: 10.6052/0459-1879-13-164 |
[8] | Lu Hongqiang Zhu Guoxiang Song Jiangyong Wu Yizhao. High-order discontinuous galerkin solution of linearized Euler equations[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(3): 621-624. DOI: 10.6052/0459-1879-2011-3-lxxb2010-077 |
[9] | Donghuan Liu, Xiaoping Zheng, Yinghua Liu. discontinuous galerkin method for discontinuous temperature field problems[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(1): 74-82. DOI: 10.6052/0459-1879-2010-1-2009-003 |
[10] | ON THE STABILITY OF ISOTHERMAL DISCONTINUITY[J]. Chinese Journal of Theoretical and Applied Mechanics, 1992, 24(6): 742-746. DOI: 10.6052/0459-1879-1992-6-1995-798 |