Citation: | Gao Jianbo. Multiscale analysis of complex time series. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(8): 2318-2331. DOI: 10.6052/0459-1879-22-213 |
[1] |
Gao J, Cao Y, Tung WW, et al. Multiscale Analysis of Complex Time Series: Integration of Chaos and Random Fractal Theory, and Beyond. Wiley, 2007
|
[2] |
Wu Z, Huang NE, Long SR, et al. On the trend, detrending, and variability of nonlinear and nonstationary time series. Proceedings of the National Academy of Sciences, 2007, 104(38): 14889-14894 doi: 10.1073/pnas.0701020104
|
[3] |
Cuomo KM, Oppenheim AV. Circuit implementation of synchronized chaos with application to communications. Physical Review Letters, 1993, 71(1): 65-68 doi: 10.1103/PhysRevLett.71.65
|
[4] |
Cuomo KM, Oppenheim AV, Strogatz SH. Synchronization of Lorenz-based chaotic circuits with applications to communications. IEEE Transactions on Circuits & Systems II Analog & Digital Signal Processing, 1993, 40(10): 626-633
|
[5] |
Pecora LM, Carroll TL. Synchronization in chaotic system. Physical Review Letters, 1990, 64(8): 821 doi: 10.1103/PhysRevLett.64.821
|
[6] |
Chen CC, Yao K. Stochastic calculus numerical evaluation of chaotic communication system performance//The IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing, 1999
|
[7] |
Chen CC, Yao K. Numerical evaluation of error probabilities of self-synchronizing chaotic communications. IEEE Communications Letters, 2000, 4(2): 37-39 doi: 10.1109/4234.824749
|
[8] |
Lorenz EN. Deterministic nonperiodic flow. J. Atoms, 1963, 20: 130-141 doi: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
|
[9] |
Feigenbaum MJ. Universal behavior in nonlinear systems. Physica D: Nonlinear Phenomena, 1983, 7(1): 16-39
|
[10] |
Ruelle D, Takens F. On the nature of turbulence. Communications in Mathematical Physics, 1971, 20(3): 167-192 doi: 10.1007/BF01646553
|
[11] |
Pomeau Y, Manneville P. Intermittent transition to turbulence in dissipative dynamical systems. Communications in Mathematical Physics, 1980, 74(2): 189-197 doi: 10.1007/BF01197757
|
[12] |
Gao J, Xu B. Complex systems, emergence, and multiscale analysis: a tutorial and brief Survey. Applied Sciences, 2021, 11: 5736 doi: 10.3390/app11125736
|
[13] |
Wolf A, Swift JB, Swinney HL, et al. Determining Lyapunov exponents from a time series. Physica D: Nonlinear Phenomena, 1985, 16(3): 285-317 doi: 10.1016/0167-2789(85)90011-9
|
[14] |
Procaccia I, Grassberger P. Characterization of strange attractors. Physical Review Letters, 1983, 50(5): 346-349 doi: 10.1103/PhysRevLett.50.346
|
[15] |
林贞彬, 鄂学全, 李坤, et al. 低Reynold数圆柱尾流中混沌运动研究. 中国科学(A辑 数学 物理学 天文学 技术科学), 1993(03): 277-282
LIN Zhenbin, E Xuequan, LI Kun, et al. Study of chaotic motion in cylindrical wakes with low Reynold numbers. Science in China (Series A Mathematics Physics Astronomy Technical Sciences), 1993(03): 277-282(in Chinese))
|
[16] |
Osborne AR, Provenzale A. Finite correlation dimension for stochastic systems with power-law spectra. Physica D: Nonlinear Phenomena. 1989, 35(3): 357-381
|
[17] |
Provenzale A, Osborne AR, Soj R. Convergence of the K2 entropy for random noises with power law spectra. Physica D: Nonlinear Phenomena, 1991, 47(3): 361-372 doi: 10.1016/0167-2789(91)90036-9
|
[18] |
Sauer T, Yorke JA, Casdagli M. Embedology. Journal of Statistical Physics, 1991, 65(3): 579-616
|
[19] |
Liebert W, Pawelzik K, Schuster HG. Optimal embeddings of chaotic attractors from topological considerations. Europhysics Letters, 1991, 14(6): 521-526 doi: 10.1209/0295-5075/14/6/004
|
[20] |
Brown R, Abarbanel HDI, Kennel MB. Determining embedding dimension for phase-space reconstruction using a geometrical construction. Physical Review A, 1992, 45(6): 3403-3411 doi: 10.1103/PhysRevA.45.3403
|
[21] |
Gao J, Zheng Z. Local exponential divergence plot and optimal embedding of a chaotic time series. Physics Letters A, 1993, 181(2): 153-158 doi: 10.1016/0375-9601(93)90913-K
|
[22] |
Gao J, Zheng Z. Direct dynamical test for deterministic chaos. Europhysics Letters, 1994, 25(7): 485-490
|
[23] |
Gao J, Zheng Z. Direct dynamical test for deterministic chaos and optimal embedding of a chaotic time series. Phys. Rev. E, 1994, 49: 3807-3814 doi: 10.1103/PhysRevE.49.3807
|
[24] |
Gao J. Recognizing randomness in a time series. Physica D: Nonlinear Phenomena, 1997, 106(1): 49-56
|
[25] |
Raman A, Hu S. Chaos in atomic force microscopy. Physical Review Letters, 2006, 96(3): 36107 doi: 10.1103/PhysRevLett.96.036107
|
[26] |
Hu J, Gao JB, White KD. Estimating measurement noise in a time series by exploiting nonstationarity. Chaos, Solitons & Fractals, 2004, 22(4): 807-819
|
[27] |
Hwang SK, Liu JM, Gao JB. Effects of intrinsic spontaneous-emission noise on the nonlinear dynamics of an optically injected semiconductor laser. Physical Review A, 1999, 59(2): 1582-1585 doi: 10.1103/PhysRevA.59.1582
|
[28] |
Hwang SK, Liu JM, Gao JB. When can noise induce chaos? Physical Review Letters, 1999, 82(6): 1132-1135
|
[29] |
Gao JB, Liu JM, Hwang SK. Noise-induced chaos in an optically injected semiconductor laser model. Physical Review E, 2000, 61(5): 5162-5170 doi: 10.1103/PhysRevE.61.5162
|
[30] |
Gao JB, Chen CC, Hwang SK, et al. Noise-induced chaos. International Journal of Modern Physics B, 1999, 13(28): 3283-3305 doi: 10.1142/S0217979299003027
|
[31] |
Leland W, Taqqu M, Wilson DV, et al. On the self-similar nature of Ethernet traffic (extended version). IEEE/ACM Transactions on Networking, 1994, 2(1): 1-15
|
[32] |
Erramilli A, Singh RP, Pruthi P. An application of deterministic chaotic maps to model packet traffic. Queueing Systems, 1995, 20(1): 171-206
|
[33] |
Norros I. A storage model with self-similar input. Queueing Systems, 1994, 16(3): 387-396
|
[34] |
Gao J, Rubin I. Multifractal analysis and modelling of VBR video traffic. Electronics Letters, 2000, 36: 278-279 doi: 10.1049/el:20000208
|
[35] |
Gao J, Rubin I. Multifractal modeling of counting processes of long-range dependent network traffic. Computer Communications, 2001, 24(14): 1400-1410 doi: 10.1016/S0140-3664(01)00297-3
|
[36] |
Gao J, Rubin I. Multiplicative multifractal modelling of long-range-dependent network traffic. International Journal of Communication Systems, 2001, 14(8): 783-801 doi: 10.1002/dac.509
|
[37] |
Mandelbrot BB. Intermittent turbulence in self-similar cascades: divergence of high moments and dimension of the carrier. Journal of Fluid Mechanics, 1974, 62(2): 331-358 doi: 10.1017/S0022112074000711
|
[38] |
Parisi G, Frisch U. On the singularity structure of fully developed turbulence in Turbulence and predictability in geophysical fluid dynamics and climate dynamics. Turbulence and Predictability of Geophysical Flows and Climate Dynamics, 1985, 88: 71-84
|
[39] |
Dubrulle B. Intermittency in fully developed turbulence: Log-Poisson statistics and generalized scale covariance. Physical Review Letters, 1994, 73(7): 959-962 doi: 10.1103/PhysRevLett.73.959
|
[40] |
Leveque E, She Z. Universal scaling laws in fully developed turbulence. Physical Review Letters, 1994, 72(3): 336-339 doi: 10.1103/PhysRevLett.72.336
|
[41] |
Waymire EC, She Z. Quantized energy cascade and log-poisson statistics in fully developed turbulence. Physical Review Letters, 1995, 74(2): 262-265 doi: 10.1103/PhysRevLett.74.262
|
[42] |
Gao JB, Cao Y, Lee J. Principal component analysis of 1/fα noise. Physics Letters A, 2003, 314(5): 392-400
|
[43] |
Mandelbrot BB. The Fractal Geometry of Nature. San Francisco: W. H. Freeman and Co. , 1982
|
[44] |
Gao JB, Billock VA, Merk I, et al. Inertia and memory in ambiguous visual perception. Cognitive Processing, 2006, 7(2): 105-112 doi: 10.1007/s10339-006-0030-5
|
[45] |
Gao J, Hu J, Tung W, et al. Multiscale analysis of economic time series by scale-dependent Lyapunov exponent. Quantitative Finance, 2013, 13(2): 265-274 doi: 10.1080/14697688.2011.580774
|
[46] |
Gao J, Hou Y, Fan F, et al. Complexity Changes in the US and China’s Stock Markets: Differences, Causes, and Wider Social Implications. Entropy, 2020: 22
|
[47] |
Li W, Kaneko K. Long-range correlation and partial 1/f-alpha spectrum in a noncoding DNA sequence. Europhysics Letters, 1992, 17(7): 655-660 doi: 10.1209/0295-5075/17/7/014
|
[48] |
Voss RF. Evolution of long-range fractal correlations and 1/f noise in DNA base sequences. Physical Review Letters, 1992, 68(25): 3805-3808 doi: 10.1103/PhysRevLett.68.3805
|
[49] |
Peng CK, Buldyrev SV, Goldberger AL, et al. Long-range correlations in nucleotide sequences. Nature, 1992, 356(6365): 168-170 doi: 10.1038/356168a0
|
[50] |
Gao J, Qi Y, Cao Y, et al. Protein coding sequence identification by simultaneously characterizing the periodic and random features of DNA sequences. Journal of Biomedicine and Biotechnology, 2005, 2005: 371096
|
[51] |
Hu J, Gao J, Cao Y, et al. Exploiting noise in array CGH data to improve detection of DNA copy number change. Nucleic Acids Research, 2007, 35(5): e35 doi: 10.1093/nar/gkl730
|
[52] |
Gilden DL, Thornton T, Mallon MW. 1/f noise in human cognition. Science, 1995, 267(5205): 1837-1839 doi: 10.1126/science.7892611
|
[53] |
Gao J, Fang P, Liu F. Empirical scaling law connecting persistence and severity of global terrorism. Physica A: Statistical Mechanics and Its Applications, 2017, 482: 74-86 doi: 10.1016/j.physa.2017.04.032
|
[54] |
Ding M, Kelso JAS, Chen Y. Long memory processes (1/f-alpha Type) in human coordination. Physical Review Letters, 1997, 79(22): 4501-4504 doi: 10.1103/PhysRevLett.79.4501
|
[55] |
De Luca CJ, Collins JJ. Random walking during quiet standing. Physical Review Letters, 1994, 73(5): 764-767 doi: 10.1103/PhysRevLett.73.764
|
[56] |
Gao J, Hu J, Buckley T, et al. Shannon and Renyi entropies to classify effects of mild traumatic brain injury on postural sway. PLOS ONE, 2011, 6(9): e24446 doi: 10.1371/journal.pone.0024446
|
[57] |
Ivanov PC, Rosenblum MG, Peng CK, et al. Scaling behaviour of heartbeat intervals obtained by wavelet-based time-series analysis. Nature, 1996, 383(6598): 323-327 doi: 10.1038/383323a0
|
[58] |
Goldberger AL, Ivanov PC, Stanley HE, et al. Scale-independent measures and pathologic cardiac dynamics. Physical Review Letters, 1998, 81(11): 2388-2391 doi: 10.1103/PhysRevLett.81.2388
|
[59] |
Ivanov PC, Amaral LAN, Goldberger AL, et al. Multifractality in human heartbeat dynamics. Nature, 1999, 399(6735): 461-465 doi: 10.1038/20924
|
[60] |
Ivanov PC, Nunes Amaral LA, Stanley HE, et al. Scale invariance in the nonstationarity of human heart rate. Physical Review Letters, 2001, 87(16): 168105 doi: 10.1103/PhysRevLett.87.168105
|
[61] |
Hu J, Gao J, Tung W, et al. Multiscale analysis of heart rate variability: A comparison of different complexity measures. Annals of Biomedical Engineering, 2010, 38(3): 854-864 doi: 10.1007/s10439-009-9863-2
|
[62] |
Wolf M. 1/ƒ noise in the distribution of prime numbers. Physica A: Statistical Mechanics and Its Applications, 1997, 241(3): 493-499
|
[63] |
Cox D. Long-range Dependence: A Review. The Iowa State University Press, 1984
|
[64] |
Box GEP, Jenkins GM. Time Series Analysis: Forecasting and Control. (3rd ed), Prentice Hall PTR, 1994
|
[65] |
Jing H, Wen-Wen T, Jianbo G. Detection of low observable targets within sea clutter by structure function based multifractal analysis. IEEE Transactions on Antennas and Propagation, 2006, 54(1): 136-143 doi: 10.1109/TAP.2005.861541
|
[66] |
Hu J, Gao J, Posner FL, et al. Target detection within sea clutter: A comparative study by fractal scaling analyses. Fractals, 2006, 14: 187-204 doi: 10.1142/S0218348X06003210
|
[67] |
Hu J, Tung WW, Cao YH, et al. Distinguishing chaos from noise by scale-dependent Lyapunov exponent. Physical Review E, 2006, 74(6): 66204 doi: 10.1103/PhysRevE.74.066204
|
[68] |
Gao J, Hu J, Tung W. Complexity measures of brain wave dynamics. Cognitive Neurodynamics, 2011, 5(2): 171-182 doi: 10.1007/s11571-011-9151-3
|
[69] |
Li Q, Gao J, Huang Q, et al. Distinguishing epileptiform discharges from normal electroencephalograms using scale-dependent Lyapunov exponent. Frontiers in Bioengineering and Biotechnology, 2020, 8: 1006 doi: 10.3389/fbioe.2020.01006
|
[70] |
Hu J, Gao J, Wang X. Multifractal analysis of sunspot time series: The effects of the 11-year cycle and Fourier truncation. Journal of Statistical Mechanics: Theory and Experiment, 2009, 2009(2): P2066 doi: 10.1088/1742-5468/2009/02/P02066
|
[71] |
Gao J, Sultan H, Hu J, et al. Denoising nonlinear time series by adaptive filtering and wavelet shrinkage:a comparison. IEEE Signal Processing Letters, 2010, 17(3): 237-240
|
[72] |
Gao J, Hu J, Yang L, et al. Detecting chaos in heavy-noise environments. Physical Review E, 2011, 83(4): 46210 doi: 10.1103/PhysRevE.83.046210
|
[73] |
Gao J, Hu J, Tung W. Facilitating joint chaos and fractal analysis of biosignals through nonlinear adaptive filtering. PLOS ONE, 2011, 6(9): e24331 doi: 10.1371/journal.pone.0024331
|
[74] |
Gao J, Hu J, Mao X, et al. Culturomics meets random fractal theory: insights into long-range correlations of social and natural phenomena over the past two centuries. Journal of The Royal Society Interface, 2012, 9(73): 1956-1964 doi: 10.1098/rsif.2011.0846
|
[75] |
Riley M, Bonnette S, Kuznetsov N, et al. A tutorial introduction to adaptive fractal analysis. Frontiers in Physiology, 2012, 3: 371
|
[76] |
Cleveland WS. Robust locally weighted regression and smoothing scatterplots. Journal of the American Statistical Association, 1979, 74(368): 829-836 doi: 10.1080/01621459.1979.10481038
|
[77] |
Savitzky A, Golay MJE. Smoothing and differentiation of data by simplified least squares procedures. Analytical Chemistry, 1964, 36(8): 1627-1639 doi: 10.1021/ac60214a047
|
[78] |
Li Q, Gao J, Zhang Z, et al. Distinguishing epileptiform discharges from normal electroencephalograms using adaptive fractal and network analysis: A clinical perspective. Frontiers in Physiology, 2020, 11: 828 doi: 10.3389/fphys.2020.00828
|
[1] | Wenlai Cai, Yajun Huang, Weiyang Liu, Haoyu Peng, Zhigang Huang. MULTISCALE SIMULATION OF THE DIELECTROPHORESIS SEPARATION PROCESS OF FLEXIBLE MICROPARTICLE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 405-414. DOI: 10.6052/0459-1879-18-297 |
[2] | Lu Mengkai, Zhang Hongwu, Zheng Yonggang. EMBEDDED STRONG DISCONTINUITY MODEL BASED MULTISCALE FINITE ELEMENT METHOD FOR STRAIN LOCALIZATION ANALYSIS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(3): 649-658. DOI: 10.6052/0459-1879-16-397 |
[3] | Zhuo Xiaoxiang, Liu Hui, Chu Xihua, Xu Yuanjie. A GENERALIZED MULTISCALE FINITE ELEMENT METHOD FOR DYNAMIC ANALYSIS OF HETEROGENEOUS MATERIAL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(2): 378-386. DOI: 10.6052/0459-1879-15-211 |
[4] | Yu Haitao, Yuan Yong. MULTI-SCALE DYNAMIC ANALYSIS METHOD FOR UNDERGROUND STRUCTURES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(6): 1028-1036. DOI: 10.6052/0459-1879-12-133 |
[5] | A Bridging Scale Method for Multi-scale Analysis of Granular Materials[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(5): 889-900. DOI: 10.6052/0459-1879-2010-5-lxxb2009-323 |
[6] | Lin Liu, Jun Yan, Gengdong Cheng. Elasto-plastic analysis for 2d structures with truss-like materials[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 39(1): 54-62. DOI: 10.6052/0459-1879-2007-1-2005-407 |
[7] | Tieqiao Tang, Haijun Huang, S.C. Wong, Rui Jiang. Lane changing analysis for two-lane traffic flow[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 39(1): 49-54. DOI: 10.6052/0459-1879-2007-1-2006-282 |
[8] | Thermodynamic analysis of multiphase periodic structures based on a spatial and temporal multiple scale method[J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(2): 226-235. DOI: 10.6052/0459-1879-2006-2-2004-519 |
[9] | Multiscale Methods For Nonlinear Analysis Of Composite Materials[J]. Chinese Journal of Theoretical and Applied Mechanics, 2004, 36(3): 359-363. DOI: 10.6052/0459-1879-2004-3-2002-364 |
[10] | 样条积分方程法分析弹塑性板弯曲[J]. Chinese Journal of Theoretical and Applied Mechanics, 1990, 22(2): 241-245. DOI: 10.6052/0459-1879-1990-2-1995-940 |