Citation: | Song Jiaxi, Pan Shucheng. Numerical investigation of shock-droplet interaction with high-Mach numbers. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(9): 2419-2434. DOI: 10.6052/0459-1879-22-191 |
[1] |
Waldman GD, Reinecke WG, Glenn DC. Raindrop breakup in the shock layer of a high-speed vehicle. AIAA Journal, 1972, 10(9): 1200-1204 doi: 10.2514/3.50350
|
[2] |
Hinze JO. Critical speeds and sizes of liquid globules. Applied Scientific Research Section A: Mechanics Heat Chemical Engineering Mathematical Methods, 1949, 1(4): 273-288
|
[3] |
Hanson AR, Domich EG, Adams HS. Shock tube investigation of the breakup of drops by air blasts. Physics of Fluids, 1963, 6(8): 1070-1080 doi: 10.1063/1.1706864
|
[4] |
Ranger AA, Nicholls JA. Aerodynamic shattering of liquid drops. AIAA Journal, 1969, 7(2): 285 doi: 10.2514/3.5087
|
[5] |
Patel PD, Theofanous TG. Hydrodynamic fragmentation of drops. Journal of Fluid Mechanics, 1981, 103: 207-223
|
[6] |
Pilch M, Erdman CA. Use of breakup time data and velocity history data to predict the maximum size of stable fragments for acceleration-induced breakup of a liquid-drop. International Journal of Multiphase Flow, 1987, 13(6): 741-757 doi: 10.1016/0301-9322(87)90063-2
|
[7] |
易翔宇. 激波诱导高速气流中液滴的变形与破碎实验研究. [博士论文]. 合肥: 中国科学技术大学, 2017
Yi Xiangyu. Experimental study of the deformation and breakup of a liquid drop in shock induced gas flow. [PhD Thesis]. Hefei: University of Science and Technology of China, 2017 (in Chinese))
|
[8] |
Theofanous TG. Aerobreakup of newtonian and viscoelastic liquids. Annual Review of Fluid Mechanics, 2011, 43: 661-690 doi: 10.1146/annurev-fluid-122109-160638
|
[9] |
Theofanous TG, Li GJ. On the physics of aerobreakup. Physics of Fluids, 2008, 20(5): 052103
|
[10] |
Chen H. Two-dimensional simulation of stripping breakup of a water droplet. AIAA Journal, 2008, 46(5): 1135-1143 doi: 10.2514/1.31286
|
[11] |
Kaiser JWJ, Winter JM, Adami S, et al. Investigation of interface deformation dynamics during high-Weber number cylindrical droplet breakup. International Journal of Multiphase Flow, 2020, 132: 103409
|
[12] |
Chang CH, Deng XL, Theofanous TG. Direct numerical simulation of interfacial instabilities: A consistent, conservative, all-speed, sharp-interface method. Journal of Computational Physics, 2013, 242: 946-990 doi: 10.1016/j.jcp.2013.01.014
|
[13] |
Han J, Tryggvason G. Secondary breakup of axisymmetric liquid drops. II. Impulsive acceleration. Physics of Fluids, 2001, 13(6): 1554-1565
|
[14] |
Meng JC, Colonius T. Numerical simulation of the aerobreakup of a water droplet. Journal of Fluid Mechanics, 2018, 835: 1108-1135 doi: 10.1017/jfm.2017.804
|
[15] |
Klein AL, Bouwhuis W, Visser CW, et al. Drop shaping by laser-pulse impact. Physical Review Applied, 2015, 3(4): 044018 doi: 10.1103/PhysRevApplied.3.044018
|
[16] |
Dorschner B, Biasiori-Poulanges L, Schmidmayer K, et al. On the formation and recurrent shedding of ligaments in droplet aerobreakup. Journal of Fluid Mechanics, 2020, 904(A20): 2020699
|
[17] |
Sharma S, Singh AP, Rao SS, et al. Shock induced aerobreakup of a droplet. Journal of Fluid Mechanics, 2021, 929(A27): 2021860
|
[18] |
Wang ZG, Hopfes T, Giglmaier M, et al. Effect of Mach number on droplet aerobreakup in shear stripping regime. Experiments in Fluids, 2020, 61(9): 193
|
[19] |
Wang ZG, Hopfes T, Giglmaier M, et al. Experimental investigation of shock-induced tandem droplet breakup. Physics of Fluids, 2021, 33(1): 012113
|
[20] |
Leung J, Menon SK. Design and test of a shock tube facility to investigate droplet aerobreakup//AIAA Propulsion and Energy Forum, 2020
|
[21] |
Nykteri G, Gavaises M. Droplet aerobreakup under the shear-induced entrainment regime using a multiscale two-fluid approach. Physical Review Fluids, 2021, 6(8): 084304
|
[22] |
Garcia-Magarino A, Sor S, Velazquez A. New droplet aero-breakup mechanism associated to unsteady flow loading. Experimental Thermal and Fluid Science, 2021, 121: 110290
|
[23] |
陆守香, 秦友花. 激波诱导的液滴变形和破碎. 高压物理学报, 2000(02): 151-154 doi: 10.3969/j.issn.1000-5773.2000.02.012
Lu Shouxiang, Qin Youhua. Deformation and breakup of droplets behind shock wave. Chinese Journal of High Pressure Physics, 2000(02): 151-154(in Chinese) doi: 10.3969/j.issn.1000-5773.2000.02.012
|
[24] |
耿继辉, 叶经方, 王健等. 激波诱导液滴变形和破碎现象实验研究. 工程热物理学报, 2003(05): 797-800 doi: 10.3321/j.issn:0253-231X.2003.05.023
Geng Jihui, Ye Jingfang, Wang Jian, et al. Experimental investigation on phenomena of shock wave-induced droplet deformation and breakup. Journal of Engineering Thermophysics, 2003(05): 797-800 (in Chinese) doi: 10.3321/j.issn:0253-231X.2003.05.023
|
[25] |
楼建锋, 洪滔, 朱建士. 液滴在气体介质中剪切破碎的数值模拟研究. 计算力学学报, 2011, 28(02): 210-213 doi: 10.7511/jslx201102010
Lou Jianfeng, Hong Tao, Zhu Jianshi. Numerical study on shearing breakup of liquid droplet in gas medium. Chinese Journal of Computational Mechanics, 2011, 28(02): 210-213 (in Chinese) doi: 10.7511/jslx201102010
|
[26] |
杨威, 贾明, 孙凯等. 液滴变形-袋式-多模式破碎转换研究. 工程热物理学报, 2017, 38(02): 416-420
Yang Wei, Jia Meng, Sun Kai, et al. Investigation on transitions of deformation-bag-multimode breakup for liquid droplets. Journal of Engineering Thermophysics, 2017, 38(02): 416-420 (in Chinese)
|
[27] |
Yang W, Jia M, Che ZZ, et al. Transitions of deformation to bag breakup and bag to bag-stamen breakup for droplets subjected to a continuous gas flow. International Journal of Heat and Mass Transfer, 2017, 111: 884-894 doi: 10.1016/j.ijheatmasstransfer.2017.04.012
|
[28] |
Zhu WL, Zhao NB, Jia XB, et al. Effect of airflow pressure on the droplet breakup in the shear breakup regime. Physics of Fluids, 2021, 33(5): 053309
|
[29] |
施红辉, 师顺, 刘晨等. 超声速条件下亚毫米液滴的变形破碎模态. 航空动力学报, 2020, 35(10): 2017-2027 doi: 10.13224/j.cnki.jasp.2020.10.001
Shi Honghui, Shi Shun, Liu Chen, et al. Deformation and fracture patterns of sub-millimeter droplets under supersonic conditions. Journal of Aerospace Power, 2020, 35(10): 2017-2027 (in Chinese) doi: 10.13224/j.cnki.jasp.2020.10.001
|
[30] |
Shen Y, Ren Y, Ding H. A 3D conservative sharp interface method for simulation of compressible two-phase flows. Journal of Computational Physics, 2020, 403: 109107 doi: 10.1016/j.jcp.2019.109107
|
[31] |
沈毅. 守恒型尖锐界面方法及激波诱导的含泡液滴演化动力学. [博士论文]. 合肥: 中国科学技术大学, 2020
Shen Yi. Conservative sharp interface method and shock-induced dynamics of droplet containing a bubble. [PhD Thesis]. Hefei: University of Science and Technology of China, 2020 (in Chinese))
|
[32] |
申帅, 李建玲, 刘金宏等. 高韦伯数条件下黏性对液滴变形过程的影响. 爆炸与冲击, 2020, 40(12): 89-100 doi: 10.11883/bzycj-2020-0051
Shen Shuai, Li Jianling, Liu Jinhong et al. Viscous effect on the droplet deformation process under high Weber number conditions. Explosion and Shock Waves, 2020, 40(12): 89-100 (in Chinese) doi: 10.11883/bzycj-2020-0051
|
[33] |
施红辉, 刘晨, 熊红平等. 激波冲击下液滴变形破碎的黏性特征. 航空动力学报, 2019, 34(09): 1962-1970 doi: 10.13224/j.cnki.jasp.2019.09.013
Shi Honghui, Liu Chen, Xiong Hongping, et al. Viscosity characteristics of droplet deformation and breakup under shock wave. Journal of Aerospace Power, 2019, 34(09): 1962-1970 (in Chinese) doi: 10.13224/j.cnki.jasp.2019.09.013
|
[34] |
褚贵东, 钱丽娟, 丛红钏等. 非牛顿流体液滴袋状破碎的数值模拟研究. 工程热物理学报, 2021, 42(10): 2575-2580
Chu Guidong, Qian Lijuan, Cong Hongchuan, et al. Numerical Simulation on Bag Breakup for Non-Newtonian Liquid Droplet. Journal of Engineering Thermophysics, 2021, 42(10): 2575-2580 (in Chinese)
|
[35] |
崔竹轩, 丁举春, 司廷. 反射激波作用下三维凹气柱界面演化的数值研究. 力学学报, 2021, 53(05): 1246-1256
Cui Zhuxuan, Ding Jujun, Si Ting, et al. Numerical study on the evolution of three-dimensonal concave cylindrical interface accelerated by reflected shock. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(05): 1246-1256 (in Chinese)
|
[36] |
Hu XY, Khoo BC, Adams NA, et al. A conservative interface method for compressible flows. Journal of Computational Physics, 2006, 219(2): 553-578 doi: 10.1016/j.jcp.2006.04.001
|
[37] |
Han LH, Hu XY, Adams NA. Adaptive multi-resolution method for compressible multi-phase flows with sharp interface model and pyramid data structure. Journal of Computational Physics, 2014, 262: 131-152 doi: 10.1016/j.jcp.2013.12.061
|
[38] |
Pan S, Han L, Hu X, et al. A conservative interface-interaction method for compressible multi-material flows. Journal of Computational Physics, 2018, 371: 870-895 doi: 10.1016/j.jcp.2018.02.007
|
[39] |
Long T, Cai J, Pan S. An accelerated conservative sharp-interface method for multiphase flows simulations. Journal of Computational Physics, 2021, 429: 110021 doi: 10.1016/j.jcp.2020.110021
|
[40] |
Jiang GS, Shu CW. Efficient Implementation of Weighted ENO Schemes. Journal of Computational Physics, 1996, 126(1): 202-228 doi: 10.1006/jcph.1996.0130
|
[41] |
Shu CW, Osher S. Efficient implementation of essentially non-oscillatory shock-capturing schemes. Journal of Computational Physics, 1989, 77(2): 439-471
|
[42] |
Meng JC, Colonius T. Numerical simulations of the early stages of high-speed droplet breakup. Shock Waves, 2015, 25(4): 399-414 doi: 10.1007/s00193-014-0546-z
|
[43] |
Osher S, Sethian JA. Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics, 1988, 79(1): 12-49 doi: 10.1016/0021-9991(88)90002-2
|
[44] |
Sussman M, Smereka P, Osher S. A level set approach for computing solutions to incompressible two-phase flow. Journal of Computational physics, 1994, 114(1): 146-159 doi: 10.1006/jcph.1994.1155
|
[45] |
Fedkiw RP, Aslam T, Merriman B, et al. A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method). Journal of Computational Physics, 1999, 152(2): 457-492 doi: 10.1006/jcph.1999.6236
|
[46] |
Harten A. Adaptive multiresolution schemes for shock computations. Journal of Computational Physics, 1994, 115(2): 319-338 doi: 10.1006/jcph.1994.1199
|
[47] |
Popinet S. Numerical models of surface tension. Annual Review of Fluid Mechanics, 2018, 50: 49-75 doi: 10.1146/annurev-fluid-122316-045034
|
[48] |
Ranjan D, Oakley J, Bonazza R. Shock-bubble interactions. Annual Review of Fluid Mechanics, 2011, 43(1): 117-140 doi: 10.1146/annurev-fluid-122109-160744
|
[49] |
Sembian S, Liverts M, Tillmark N, et al. Plane shock wave interaction with a cylindrical water column. Physics of Fluids, 2016, 28(5): 056102 doi: 10.1063/1.4948274
|
[50] |
Igra D, Takayama K. Numerical simulation of shock wave interaction with a water column. Shock Waves, 2001, 11(3): 219-228 doi: 10.1007/PL00004077
|
[1] | Zhuo Yue, Luo Kai, Shang Jiahao, Yu Qinghao, Wang Qiu, Wang Yejun, Liang Jinhu, Zhao Wei. EXPERIMENTAL STUDY ON THE CHARACTERIZATION OF TRANSVERSE JET INTERACTION IN HYPERSONIC RAREFIED FLOW[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(5): 1053-1062. DOI: 10.6052/0459-1879-22-599 |
[2] | Nie Shaojun, Wang Yunpeng, Xue Xiaopeng, Jiang Zonglin. RESEARCH ON RUPTURE CHARACTERISTICS OF STEEL DIAPHRAGM BETWEEN HIGH AND LOW PRESURE SECTION IN SHOCK TUNNEL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(6): 1747-1757. DOI: 10.6052/0459-1879-20-341 |
[3] | Wang Yunpeng, Yang Ruixin, Nie Shaojun, Jiang Zonglin. DEEP-LEARNING-BASED INTELLIGENT FORCE MEASUREMENT SYSTEM USING IN A SHOCK TUNNEL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(5): 1304-1313. DOI: 10.6052/0459-1879-20-190 |
[4] | Jiang Zonglin, Li Jinping, Hu Zongmin, Liu Yunfeng, Yu Hongru. SHOCK TUNNEL THEORY AND METHODS FOR DUPLICATING HYPERSONIC FLIGHT CONDITIONS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(6): 1283-1291. DOI: 10.6052/0459-1879-18-238 |
[5] | Wang Yunpeng, Liu Yunfeng, Yuan Chaokai, Luo Changtong, Wang Chun, Hu Zongmin, Han Guilai, Zhao Wei, Jiang Zonglin. STUDY ON FORCE MEASUREMENT IN LONG-TEST DURATION SHOCK TUNNEL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 545-556. DOI: 10.6052/0459-1879-15-295 |
[6] | Meng Baoqing, Han Guilai, Jiang Zonglin. THEORETICAL INVESTIGATION ON AERODYNAMIC FORCE MEASUREMENT INTERFERED BY STRUCTURAL VIBRATIONS IN LARGE SHOCK TUNNEL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(1): 102-110. DOI: 10.6052/0459-1879-15-152 |
[7] | Jiang Zonglin, Li Jinping, Zhao Wei, Liu Yunfeng, Yu Hongru. INVESTIGATING INTO TECHNIQUES FOR EXTENDING THE TEST-DURATION OF DETONATION-DRIVEN SHOCK TUNNELS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(5): 824-831. DOI: 10.6052/0459-1879-12-160 |
[8] | Hongru Yu. Development study of detonation driving techniques for a shock tunnel[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(6): 978-983. DOI: 10.6052/0459-1879-2011-6-lxxb2011-331 |
[9] | Jinping Li, Heng Feng, Zonglin Jiang. Test gas contamination induced by the interaction of shock/boundary layer in shock tunnels[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(3): 289-296. DOI: 10.6052/0459-1879-2008-3-2007-110 |
[10] | OXV-HYDROGEN COMBUSTION AND DETONATION DRIVEN SHOCK TUBE[J]. Chinese Journal of Theoretical and Applied Mechanics, 1999, 31(4): 389-397. DOI: 10.6052/0459-1879-1999-4-1995-046 |