Citation: | He Jiaqi, Jia Xiaoxuan, Wu Weida, Zhong Jiehua, Luo Yangjun. P-CS uncertainty quantification model and its performance data-driven updating method. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(10): 2808-2824. DOI: 10.6052/0459-1879-22-173 |
[1] |
王栋. 载荷作用位置不确定条件下结构动态稳健性拓扑优化设计. 力学学报, 2021, 53(5): 1439-1448 (Wang Dong. Robust dynamic topology optimization of continuum structure subjected to harmonic excitation of loading position uncertainty. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(5): 1439-1448 (in Chinese) doi: 10.6052/0459-1879-21-009
|
[2] |
Frangopol DM. Life-cycle performance, management, and optimization of structural systems under uncertainty: accomplishments and challenges. Structure and Infrastructure Engineering: Maintenance, 2011, 7(6): 389-413 doi: 10.1080/15732471003594427
|
[3] |
Huang Y, Shao C, Wu B, et al. State-of-the-art review on Bayesian inference in structural system identification and damage assessment. Advances in Structural Engineering, 2018, 22(6): 1329-1351
|
[4] |
许灿, 朱平, 刘钊等. 平纹机织碳纤维复合材料的多尺度随机力学性能预测研究. 力学学报, 2020, 52(3): 763-773 (Xu Can, Zhu Ping, Liu Zhao, et al. Research on multiscale stochastic mechanical properties prediction of plain woven carbon fiber composites. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(3): 763-773 (in Chinese) doi: 10.6052/0459-1879-20-002
|
[5] |
万志强, 陈建兵, Michael Beer. 随机参数系统不确定性量化的泛函观点与整体灵敏度分析. 力学学报, 2021, 53(3): 837-854 (Wan Zhiqiang, Chen Jianbing, Michael Beer. Functional perspective of uncertainty quantification for stochastic parametric systems and global sensitivity analysis. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(3): 837-854 (in Chinese) doi: 10.6052/0459-1879-20-336
|
[6] |
唐新姿, 王效禹, 袁可人等. 风速不确定性对风力机气动力影响量化研究. 力学学报, 2020, 52(1): 51-59 (Tang Xinzi, Wang Xiaoyu, Yuan Keren, et al. Quantitation study of influence of wind speed uncertainty on aerodynamic forces of wind turbine. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 51-59 (in Chinese) doi: 10.6052/0459-1879-19-214
|
[7] |
Ben-Haim Y. A non-probabilistic concept of reliability. Structural Safety, 1994, 14(4): 227-245 doi: 10.1016/0167-4730(94)90013-2
|
[8] |
Ben-Haim Y. A non-probabilistic measure of reliability of linear systems based on expansion of convex models. Structural Safety, 1995, 17(2): 91-109 doi: 10.1016/0167-4730(95)00004-N
|
[9] |
Hong LX, Li HC, Fu JF, et al. Hybrid active learning method for non-probabilistic reliability analysis with multi-super-ellipsoidal model. Reliability Engineering and System Safety, 2022, 222: 108414 doi: 10.1016/j.ress.2022.108414
|
[10] |
Zhan JJ, Luo YJ, Zhang XP, et al. A general assessment index for non-probabilistic reliability of structures with bounded field and parametric uncertainties. Computer Methods in Applied Mechanics and Engineering, 2020, 366(12): 113046
|
[11] |
Kang Z, Zhang W. Construction and application of an ellipsoidal convex model using a semi-definite programming formulation from measured data. Computer Methods in Applied Mechanics and Engineering, 2016, 300: 461-489 doi: 10.1016/j.cma.2015.11.025
|
[12] |
Meng Z, Zhang ZH, Zhou HL. A novel experimental data-driven exponential convex model for reliability assessment with uncertain-but-bounded parameters. Applied Mathematical Modelling, 2020, 77: 773-787 doi: 10.1016/j.apm.2019.08.010
|
[13] |
Dempster AP. Upper and lower probabilities induced by a multivalued mapping. Annals of Mathematical Statistics, 1967, 38(2): 325-339 doi: 10.1214/aoms/1177698950
|
[14] |
Limbourg P, Rocquigny ED. Uncertainty analysis using evidence theory-confronting level-1 and level-2 approaches with data availability and computational constraints. Reliability Engineering and System Safety, 2010, 95(5): 550-564 doi: 10.1016/j.ress.2010.01.005
|
[15] |
Frank MJ, Nelsen RB, Schweizer B. Best-possible bounds for the distribution of a sum-a problem of Kolmogorov. Probability Theory and Related Fields, 1987, 74(2): 199-211 doi: 10.1007/BF00569989
|
[16] |
Faes M, Daub M, Marelli S, et al. Engineering analysis with probability boxes: a review on computational methods. Structural Safety, 2021, 93: 102092 doi: 10.1016/j.strusafe.2021.102092
|
[17] |
Zadeh L. Probability measure of fuzzy event. Journal of Mathematical Analysis and Application, 1968, 23: 421-427 doi: 10.1016/0022-247X(68)90078-4
|
[18] |
董玉革, 陈心昭, 赵显德等. 基于模糊事件概率理论的模糊可靠性分析通用方法. 计算力学学报, 2005, 22(3): 281-286 (Dong Yuge, Chen Xinzhao, Zhao Xiande, et al. A general approach for fuzzy reliability analysis based. Chinese Journal of Computational Mechanics, 2005, 22(3): 281-286 (in Chinese) doi: 10.3969/j.issn.1007-4708.2005.03.005
|
[19] |
Xiao FY. Multi-sensor data fusion based on the belief divergence measure of evidences and the belief entropy. Information Fusion, 2018, 46: 23-32
|
[20] |
Wu DD, Tang YC. An improved failure mode and effects analysis method based on uncertainty measure in the evidence theory. Quality and Reliability Engineering, 2020, 36(5): 1786-1807 doi: 10.1002/qre.2660
|
[21] |
Zhang Z, Jiang C, Ruan, XX, et al. A novel evidence theory model dealing with correlated variables and the corresponding structural reliability analysis method. Structural and Multidisciplinary Optimization, 2018, 57(4): 1749-1764 doi: 10.1007/s00158-017-1843-9
|
[22] |
Destercke S, Dubois D, Chojnacki E. Unifying practical uncertainty representations-I: Generalized p-boxes. International Journal of Approximate Reasoning, 2008, 49(3): 649-663 doi: 10.1016/j.ijar.2008.07.003
|
[23] |
Alam J, Neves LAC, Zhang H, et al. Assessment of remaining service life of deteriorated concrete bridges under imprecise probabilistic information. Mechanical Systems and Signal Processing, 2022, 167: 108565 doi: 10.1016/j.ymssp.2021.108565
|
[24] |
Zhang H, Mullen RL, Muhanna RL. Structural analysis with probability-boxes. International Journal of Reliability and Safety, 2012, 6(1-3): 110-129
|
[25] |
万越, 吕震宙, 袁修开. 对称抛物型模糊变量下的可靠性及灵敏度分析. 力学季刊, 2010, 31(1): 83-91 (Wan Yue, Lü Zhenzhou, Yuan Xiukai. Reliability and reliability sensitivity analysis including fuzzy variables with symmetric parabolic membership functions. Chinese Quarterly of Mechanics, 2010, 31(1): 83-91 (in Chinese) doi: 10.15959/j.cnki.0254-0053.2010.01.013
|
[26] |
Li WX, Liu L, Dai LF. Fuzzy probability measures based non-symmetric membership function: engineering examples of ground subsidence due to underground mining. Engineering Applications of Artificial Intelligence, 2010, 23(3): 420-431 doi: 10.1016/j.engappai.2010.01.003
|
[27] |
孙杰, 张晓, 牟在根. 不同隶属函数对地下连续墙模糊可靠度影响的分析. 岩土力学, 2008, 29(3): 838-840 (Sun Jie, Zhang Xiao, Mu Zaigen. Analysis of effect of different membership function on calculation of fuzzy reliability in underground continuous wall. Rock and Soil Mechanics, 2008, 29(3): 838-840 (in Chinese) doi: 10.3969/j.issn.1000-7598.2008.03.049
|
[28] |
Purba, Hendry J. Fuzzy probability on reliability study of nuclear power plant probabilistic safety assessment: A review. Progress in Nuclear Energy, 2014, 76: 73-80 doi: 10.1016/j.pnucene.2014.05.010
|
[29] |
Ling CY, Lu ZZ, Feng KX, et al. Efficient numerical simulation methods for estimating fuzzy failure probability based importance measure indices. Structural and Multidisciplinary Optimization, 2019, 59: 577-593 doi: 10.1007/s00158-018-2085-1
|
[30] |
Kala Z. Fuzzy probability analysis of the fatigue resistance of steel structural members under bending. Journal of Civil Engineering and Management, 2008, 14(1): 67-72 doi: 10.3846/1392-3730.2008.14.67-72
|
[31] |
Li JW, Jiang C. A novel imprecise stochastic process model for time-variant or dynamic uncertainty quantification. Chinese Journal of Aeronautics, 2022, in press, https://doi.org/10.1016/j.cja.2022.01.004
|
[32] |
Ping MH, Han X, Jiang C, et al. A time-variant uncertainty propagation analysis method based on a new technique for simulating non-Gaussian stochastic processes. Mechanical Systems and Signal Processing, 2021, 150: 107299
|
[33] |
Wang L, Wang XJ, Chen X, et al. Time-variant reliability model and its measure index of structures based on a non-probabilistic interval process. Acta Mechanica, 2015, 226: 3221-3241 doi: 10.1007/s00707-015-1379-2
|
[34] |
Meng Z, Guo LB, Hao P, et al. On the use of probabilistic and non-probabilistic super parametric hybrid models for time-variant reliability analysis. Computer Methods in Applied Mechanics and Engineering, 2021, 386: 114113 doi: 10.1016/j.cma.2021.114113
|
[35] |
Ling CY, Lu ZZ. Adaptive Kriging coupled with importance sampling strategies for time-variant hybrid reliability analysis. Applied Mathematical Modelling, 2020, 77: 1820-1841
|
[36] |
Zhao Z, Lu ZH, Zhao YG. An efficient extreme value moment method combining adaptive Kriging model for time-variant imprecise reliability analysis. Mechanical Systems and Signal Processing, 2022, 171: 108905 doi: 10.1016/j.ymssp.2022.108905
|
[37] |
Bissiri PG, Holmes CC, Walker SG. A general framework for updating belief distributions. Journal of the Royal Statistical Society Series B-Statistical Methodology, 2016, 78(5): 1103-1130 doi: 10.1111/rssb.12158
|
[38] |
Wang RC. Analysis and improvement of combination rule in D-S theory. Applied Mechanics and Materials, 2014, 556-562: 3930-3934 doi: 10.4028/www.scientific.net/AMM.556-562.3930
|
[39] |
Pan Y, Zhang LM, Li ZW, et al. Improved fuzzy Bayesian network-based risk analysis with interval-valued fuzzy sets and D-S evidence theory. IEEE Transactions on Fuzzy Systems, 2019, 28(9): 2063-2077
|
[40] |
He JQ, Luo YJ. A Bayesian updating method for non-probabilistic reliability assessment of structures with performance test data. Computer Modeling in Engineering and Sciences, 2020, 125(2): 777-800 doi: 10.32604/cmes.2020.010688
|
[41] |
Ben-Haim Y, Elishakoff I. Discussion on: A non-probabilistic concept of reliability. Structural Safety, 1995, 17(3): 195-199 doi: 10.1016/0167-4730(95)00010-2
|
[42] |
Rosenblatt M. Remarks on a multivariate transformation. Annals of Mathematical Statistics, 1952, 23: 470-472 doi: 10.1214/aoms/1177729394
|
[43] |
Kang Z, Luo YJ, Li A. On non-probabilistic reliability-based design optimization of structures with uncertain-but-bounded parameters. Structural Safety, 2011, 33(3): 196-205 doi: 10.1016/j.strusafe.2011.03.002
|
[44] |
Jiang C, Han X, Lu GY, et al. Correlation analysis of non-probabilistic convex model and corresponding structural reliability technique. Computer Methods in Applied Mechanics and Engineering, 2011, 200(33-36): 2528-2546 doi: 10.1016/j.cma.2011.04.007
|
[1] | Tao Yaping, Sang Jianbing, Sun Lifang, Xiang Huaxin, Yang Peng, Shi Yulong. INVERSE ESTIMATION OF CONSTITUTIVE PARAMETERS AND MECHANICAL CHARACTERIZATION OF HUMAN FACIAL SKIN UNDER DATA-DRIVEN APPROACH[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(7): 1959-1969. DOI: 10.6052/0459-1879-24-018 |
[2] | Shi Guanghui, Jia Yibo, Hao Wenyu, Wu Wenhua, Li Qiang, Lin Ye, Du Zongliang. OPTIMAL DESIGN OF RUDDER STRUCTURES BASED ON DATA-DRIVEN METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(11): 2577-2587. DOI: 10.6052/0459-1879-23-187 |
[3] | Liu Yifan, Zhang Jie, Zhang Xinyu, Wang Zhiyong, Wang Zhihua. PREDICTION OF CONCRETE MESO-MODEL COMPRESSION STRESS-STRAIN CURVE BASED ON “AM-GOOGLENET + BP” COMBINED DATA-DRIVEN METHODS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(4): 925-938. DOI: 10.6052/0459-1879-22-506 |
[4] | Li Yang, Sang Jianbing, Ao Rihan, Ma Yu, Wei Xinyu. RESEARCH ON INVERSION METHOD OF HYPERELASTIC CONSTITUTIVE PARAMETERS OF SKELETAL MUSCLES BASED ON SIMULATION AND INTELLIGENT ALGORITHM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(5): 1449-1456. DOI: 10.6052/0459-1879-21-038 |
[5] | Niu Wendong, Wang Yanhui, Yang Yanpeng, Zhu Yaqiang, Wang Shuxin. HYDRODYNAMIC PARAMETER IDENTIFICATION OF HYBRID-DRIVEN UNDERWATER GLIDER[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4): 813-822. DOI: 10.6052/0459-1879-16-162 |
[6] | Li Qi, Qiu Zhiping, Zhang Xudong. SECOND-ORDER PARAMETER PERTURBATION METHOD FOR DYNAMIC STRUCTURES WITH INTERVAL PARAMETERS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(1): 147-153. DOI: 10.6052/0459-1879-14-088 |
[7] | nfluence of exciting parameters on the vibration of single cavitation bubble driven by intensive sound[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(1): 8-14. DOI: 10.6052/0459-1879-2009-1-2007-461 |
[8] | 研究了雷诺数Re=200, 1000, 线速度比α=0.5,[J]. Chinese Journal of Theoretical and Applied Mechanics, 2004, 36(4): 466-471. DOI: 10.6052/0459-1879-2004-4-2003-021 |
[9] | THE LARGE PERTURBATION INVERSION METHOD ON 2 D MEDIUM PARAMETERS[J]. Chinese Journal of Theoretical and Applied Mechanics, 1997, 29(2): 215-219. DOI: 10.6052/0459-1879-1997-2-1995-217 |
[10] | OPTIMAL CORRECTION OF FREQUENCYERRORS ANDSELECTION METHOD OF PARAMETERS TO BE MODIFIED[J]. Chinese Journal of Theoretical and Applied Mechanics, 1995, 27(1): 110-116. DOI: 10.6052/0459-1879-1995-1-1995-412 |