EI、Scopus 收录
中文核心期刊
Xue Mingde, Xiang Zhihai. Review of thermal-dynamical analysis methods for large space structures. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(9): 2361-2376. DOI: 10.6052/0459-1879-22-171
Citation: Xue Mingde, Xiang Zhihai. Review of thermal-dynamical analysis methods for large space structures. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(9): 2361-2376. DOI: 10.6052/0459-1879-22-171

REVIEW OF THERMAL-DYNAMICAL ANALYSIS METHODS FOR LARGE SPACE STRUCTURES

  • Received Date: April 20, 2022
  • Accepted Date: April 26, 2022
  • Available Online: April 27, 2022
  • In recent years, various large space structures are gradually implemented in the aerospace industry of China. Thus, the corresponding thermally induced vibration problems are drawn more and more attentions. Under this background, it is necessary to clarify the underling mechanism of the thermally induced vibration phenomenon and the corresponding critical issues in the analysis and design. Based on the research work of the authors, this article gives a comprehensive review of the related problems and mainly focuses on some special aspects in the thermally induced vibration analysis of complex engineering structures, which are compose of many thin-walled bars. Firstly, this article introduces a Fourier finite element that decomposes the temperature into the average part and the perturbation part. In this way, the thermal conduction equation under thermal radiation can be decoupled into the corresponding two parts due to the orthogonal property of the Fourier series. Thus, the transient temperature field of closed-section or open-section thin-walled bars can be efficiently analyzed. Based on this kind of element, both linear and nonlinear methods for the thermally induced vibration analysis are presented with the emphasis on the thermal-dynamic coupling effect. In order to give the analytical form of the necessary condition of the thermally induced vibration, this paper analyzes the properties of the transient temperature and the oscillation displacement in the mode space, and thus it obtains a general criterion to evaluate the intensity of the thermally induced vibration. Based on these work, the dynamic stability of the thermally induced vibration is further discussed by not only the mechanism reflected in the thermal flutter criterion of a cantilever bar, but also the thermal flutter analysis of complex engineering structures. Finally, the conclusion part briefly addresses some important factors in the underground testing and the method of suppressing the thermally induced responses. Some research topics need further investigating in the future are also envisaged.
  • [1]
    Thomson WT, Reiter GS. Attitude drift of space vehicles. The Journal of the Astronautical Sciences, 1960, 7: 29-36
    [2]
    Etkin B, Hughes PC. Explanation of the anomalous spin behavior of satellites with long flexible antennae. Journal of Spacecraft and Rockets, 1967, 9(4): 1139-1145
    [3]
    Foster RS. Thermally induced vibrations of spacecraft booms. [PhD Thesis]. Virginia, US: University of Virginia, 1998
    [4]
    Thornton EA, Kim YA. Thermally induced bending vibrations of a flexible rolled-up solar array. Journal of Spacecraft and Rockets, 1993, 30(4): 438-448 doi: 10.2514/3.25550
    [5]
    Hawley SA. Hubble space telescope solar array concerns and consequence for service mission 2. Journal of Spacecraft and Rockets, 2016, 53(1): 15-24
    [6]
    Corbacho VV, Kuiper H, Gill E. Review on thermal and mechanical challenges in the development of deployable space optics. Journal of Astronomical Telescopes, Instruments, and Systems, 2020, 6(1): 010902
    [7]
    Boley BA. Thermally induced vibrations of bars. Journal of the Aeronautical Sciences, 1956, 23(2): 179-181
    [8]
    Boley BA. Approximate analyses of thermally induced vibrations of bars and plates. Journal of Applied Mechanics, 1972, 39(3): 212-216
    [9]
    Boley BA. A communication quasi una fantasìa. Mechanics Research Communications, 2015, 68(9): 2-4
    [10]
    Augusti G. Instability of struts subject to radiant heat. Meccanica, 1968, 3(9): 167-176
    [11]
    Donohue JH, Frisch HP. Thermoelastic instability of open-section booms. NASA Technical Note, D-5310, 1969
    [12]
    Yu YY. Thermally induced vibration and flutter of a flexible boom. Journal of Spacecraft and Rockets, 1969, 6(8): 902-910 doi: 10.2514/3.29725
    [13]
    Graham JD. Solar induced bending vibrations of a flexible member. AIAA Journal, 1970, 8(11): 2031-2036 doi: 10.2514/3.6042
    [14]
    Rimrott F, Abdel-Sayed R. Flexural thermal flutter under laboratory conditions. Transactions of the Canadian Society for Mechanical Engineering, 1976, 4(4): 189-196 doi: 10.1139/tcsme-1976-0027
    [15]
    Zhang JH, Xiang ZH, Liu YH, et al. Stability of thermally induced vibration of a bar subjected to solar heating. AIAA Journal, 2014, 52(3): 660-665 doi: 10.2514/1.J052574
    [16]
    Mason JB. Analysis of thermally induced structural vibrations by finite element techniques. NASA Technical Memorandum, X-321-68-333, 1968
    [17]
    Namburu RR, Tamma KK. Thermally-induced structural dynamic response of flexural configurations influenced by linear/non-linear thermal effects. AIAA Paper, 91-1175, 1991
    [18]
    Givoli D, Rand O. Harmonic finite element thermo-elastic analysis of space frames and trusses. Journal of Thermal Stresses, 1993, 16(3): 233-248 doi: 10.1080/01495739308946228
    [19]
    Xue MD, Ding Y. Two kinds of tube elements for transient thermal–structural analysis of large space structures. International Journal for Numerical Methods in Engineering, 2004, 59(10): 1335-1353 doi: 10.1002/nme.918
    [20]
    Xue MD, Duan J, Xiang ZH. Thermally-induced bending-torsion coupling vibration of large scale space structures. Computational Mechanics, 2007, 40(4): 707-723 doi: 10.1007/s00466-006-0134-x
    [21]
    Duan J, Xiang ZH, Xue MD. Thermal-dynamic coupling analysis of large space structures considering geometric nonlinearity. International Journal of Structural Stability and Dynamics, 2008, 8(4): 569-596 doi: 10.1142/S0219455408002806
    [22]
    Thornton EA. Thermal Structures for Aerospace Applications. Virginia, US: AIAA Education Series, 1996
    [23]
    胡斌, 李创, 相萌等. 可展开空间光学望远镜技术发展及展望. 红外与激光工程, 2021, 50(11): 20210199

    Hu Bin, Li Chuang, Xiang Meng, et al. Development and prospects of deployable space optical telescope technology. Infrared and Laser Engineering, 2021, 50(11): 20210199(in Chinese))
    [24]
    Chamberlain MK, Kiefer SH, LaPointe M, et al. On-orbit flight testing of the Roll-Out Solar Array. Acta Astronautica, 2021, 179(2): 407-414
    [25]
    [26]
    Su XM, Zhang JH, Wang J, et al. Experimental investigation of the thermally-induced vibration of a space boom section. Science China Physics, Mechanics & Astronomy, 2015, 58(4): 044601
    [27]
    Fan C, Bi YQ, Wang J, et al. Experimental investigation of heat flux characteristics on the thermally induced vibration of a slender thin-walled bar. International Journal of Applied Mechanics, 2020, 12(5): 2050053 doi: 10.1142/S1758825120500532
    [28]
    Wang J, Jin DG, Fan C, et al. Predicting the on-orbit thermally induced vibration through the integrated numerical and experimental approach. Acta Astronautica, 2022, 192(3): 341-350
    [29]
    Jin DG, Fan C, Wang J, et al. Experimental verification of the thermal flutter criterion for a slender cantilever boom. AIAA Journal, 2022, in press
    [30]
    Liu L, Sun SP, Cao DQ, et al. Thermal-structural analysis for flexible spacecraft with single or double solar panels: A comparison study. Acta Astronautica, 2019, 154(1): 33-43
    [31]
    Cao YT, Cao DQ, He GQ, et al. Thermal alternation induced vibration analysis of spacecraft with lateral solar arrays in orbit. Applied Mathematical Modelling, 2020, 86(10): 166-184
    [32]
    丁勇. 大型空间结构的热-结构有限元分析. [博士论文]. 北京: 清华大学, 2002

    Ding Yong. Thermal-structural analysis of large space structure with finite element method. [PhD Thesis]. Beijing: Tsinghua University, 2002 (in Chinese))
    [33]
    段进. 大型柔性空间结构的热-动力学耦合有限元分析. [博士论文]. 北京: 清华大学, 2007

    Duan Jin. The thermal-dynamic coupling analysis of large flexible space structures by finite element method. [PhD Thesis]. Beijing: Tsinghua University, 2007 (in Chinese))
    [34]
    袁小德. 两种热致响应分析新单元及弯扭耦合热颤振准则. [硕士论文]. 北京: 清华大学, 2019

    Yuan Xiaode. Two new elements for thermally-induced responses and the bending and torsion coupled thermal-flutter criterion. [Master Thesis]. Beijing: Tsinghua University, 2019 (in Chinese))
    [35]
    Huebner KH, Donald LD, Douglas ES, et al. Finite Element Method for Engineers, 4th ed. New York: John Wiley & Sons Inc, 2001
    [36]
    Nour-Omid B. Lanczos method for heat conduction analysis. International Journal for Numerical Methods in Engineering, 1987, 24(1): 251-262 doi: 10.1002/nme.1620240117
    [37]
    程乐锦. 大型空间结构的热诱发振动有限元分析. [博士论文]. 北京: 清华大学, 2003

    Cheng Lejin. Finite element analysis for thermally induced vibrations of large space structures. [PhD Thesis]. Beijing: Tsinghua University, 2003 (in Chinese))
    [38]
    李伟. 卫星刚体-结构附件耦合系统热-动力学有限元分析. [博士论文]. 北京: 清华大学, 2007

    Li Wei. The thermal-dynamic analysis of satellites with flexible appendages by finite element method. [PhD Thesis]. Beijing: Tsinghua University, 2007 (in Chinese))
    [39]
    Yang YB, Chiou HT. Rigid body motion test for nonlinear analysis with bar elements. Journal of Engineering Mechanics, 1987, 113(9): 1404-1419 doi: 10.1061/(ASCE)0733-9399(1987)113:9(1404)
    [40]
    黄彦文. 含开口薄壁杆件的大型空间结构热诱发弯扭耦合振动有限元分析. [硕士论文]. 北京: 清华大学, 2004

    Huang Yanwen. Thermally induced vibration analysis of large space structures including thin-walled open section beam by FEM. [Master Thesis]. Beijing: Tsinghua University, 2004 (in Chinese))
    [41]
    黄彦文, 薛明德, 程乐锦等. 含开口薄壁杆的大型空间结构热诱发弯扭振动. 清华大学学报(自然科学版), 2005, 45(2): 262-266 doi: 10.3321/j.issn:1000-0054.2005.02.032

    Huang Yanwen, Xue Mingde, Cheng Lejin, et al. Thermally induced vibrations of large space structures including thin-walled open bar sections. Journal of Tsinghua University (Sci and Tech), 2005, 45(2): 262-266(in Chinese)) doi: 10.3321/j.issn:1000-0054.2005.02.032
    [42]
    黄克智, 薛明德, 陆明万. 张量分析, 第3版. 北京: 清华大学出版社, 2020: 71

    Huang Kezhi, Xue Mingde, Lu Mingwan. Tensor Analysis, 3rd ed. Beijing: Tsinghua University Press, 2020: 71 (in Chinese)
    [43]
    程乐锦, 薛明德, 唐羽烨等. 大型空间结构的热-结构动力学分析. 应用力学学报, 2004, 21(2): 1-9 doi: 10.3969/j.issn.1000-4939.2004.02.001

    Cheng Lejin, Xue Mingde, Tang Yuye, et al. Thermal-dynamic analysis of large scale space structures by FEM. Chinese Journal of Applied Mechanics, 2004, 21(2): 1-9(in Chinese)) doi: 10.3969/j.issn.1000-4939.2004.02.001
    [44]
    中国大百科全书, 力学卷, 运动稳定性. 北京: 中国大百科全书出版社, 1985: 570-573

    Encyclopedia of China, Mechanics, Stability of Motion. Beijing: Encyclopedia of China Publishing House, 1985: 570-573 (in Chinese))
    [45]
    Zhang JH, Wang PH, Liu YF, et al. Can boom-supported solar sails flutter? AIAA Journal, 2020, 58(10): 4600-4603
    [46]
    Yuan XD, Xiang ZH. A thermal-flutter criterion for an open thin-walled circular cantilever bar subject to solar heating. Chinese Journal of Aeronautics, 2018, 31(9): 1902-1909 doi: 10.1016/j.cja.2018.07.002
    [47]
    Shen Z, Hu G. Thermoelastic−structural analysis of space Thin-Walled beam under solar flux. AIAA Journal, 2019, 57(4): 1781-1785 doi: 10.2514/1.J057793
    [48]
    Li W, Xiang ZH, Chen L, et al. Thermal flutter analysis of large-scale space structures based on finite element method. International Journal for Numerical Methods in Engineering, 2007, 69(5): 887-907 doi: 10.1002/nme.1793
    [49]
    樊孝清. 舱体-挠性附件系统的热诱发振动分析与控制. [硕士论文]. 北京: 清华大学, 2016

    Fan Xiaoqing. Thermally induced vibration analysis and control of the rigid hub-flexible attachment system. [Master Thesis]. Beijing: Tsinghua University, 2016 (in Chinese)
    [50]
    Zhang JH, Xiang ZH, Liu YH. Control of the thermally induced vibration of space structures by using heaters. Journal of Spacecraft and Rockets, 2014, 51(5): 1454-1463 doi: 10.2514/1.A32601
    [51]
    Liu CC, Jing XJ, Daley S, et al. Recent advances in micro-vibration isolation. Mechanical Systems and Signal Processing, 2015, 56-57: 55-80 doi: 10.1016/j.ymssp.2014.10.007
    [52]
    Fan LJ, Xiang ZH, Xue MD, et al. Robust optimization of thermal-dynamic coupling systems using a kriging model. Journal of Spacecraft and Rockets, 2010, 47(6): 1029-1037 doi: 10.2514/1.49307
    [53]
    Fan LJ, Xiang ZH. Suppressing the thermally induced vibration of large-scale space structures via structural optimization. Journal of Thermal Stresses, 2015, 38(1): 1-21 doi: 10.1080/01495739.2014.950529
    [54]
    Levine M, Fanson J. Advanced thermo-structural technologies for the NASA terrestrial planet finder mission. Structural Control and Health Monitoring, 2006, 13(1): 190-209 doi: 10.1002/stc.136
  • Related Articles

    [1]Wang Wei, Wang Weimin, Ren Yinglin, Wang Jiale, Li Weibo. DYNAMIC STABILITY INVESTIGATION AND INFLUENTIAL FACTOR ANALYSIS OF PARALLEL AXIS WHIRL ROTOR PARTIALLY FILLED WITH VISCOUS FLUID[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(3): 644-658. DOI: 10.6052/0459-1879-23-553
    [2]Zhao Xinxin, Shi Jinguang, Wang Zhongyuan, Zhang Ning. DYNAMIC STABILITY AND INFLUENCE FACTORS OF THE WHOLE TRAJECTORY OF FIXED CANARD DUAL-SPIN PROJECTILES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(5): 1364-1374. DOI: 10.6052/0459-1879-21-636
    [3]Li Yuan, Di Qinfeng, Wang Wenchang, Hua Shuai. EVALUATION METHOD AND APPLICATION OF FOAM DYNAMIC STABILITY IN HETEROGENEOUS CORES BASED ON NUCLEAR MAGNETIC RESONANCE TECHNOLOGY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(8): 2205-2213. DOI: 10.6052/0459-1879-21-278
    [4]Zhao Jie, Yu Kaiping, Xue Zhong. THE MOTION STABILITY ANALYSIS OF A ROTATING BEAM WITH A RIGID BODY ON ITS END[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(4): 606-613. DOI: 10.6052/0459-1879-12-343
    [5]Liu Yanzhu. EXACT DYNAMICAL MODEL OF AXIALLY MOVING BEAM WITH LARGE DEFORMATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(5): 832-838. DOI: 10.6052/0459-1879-12-117
    [6]Xiaoyan Ma, Yao Cheng. Stability of stationary motion for a rigid body with a flexible beam[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(6): 813-821. DOI: 10.6052/0459-1879-2007-6-2006-322
    [7]Zhaolin Wang. ON THE STABILITY OF DISSIPATIVE MECHANICAL SYSTEMS WITH CONSTRAINT DAMPING[J]. Chinese Journal of Theoretical and Applied Mechanics, 1997, 29(4): 501-505. DOI: 10.6052/0459-1879-1997-4-1995-259
    [8]一类刚-柔耦合系统的建模与稳定性研究[J]. Chinese Journal of Theoretical and Applied Mechanics, 1997, 29(4): 439-447. DOI: 10.6052/0459-1879-1997-4-1995-249
    [9]有孔隙的耦合热弹性体动力学的一些基本原理[J]. Chinese Journal of Theoretical and Applied Mechanics, 1996, 28(1): 55-65. DOI: 10.6052/0459-1879-1996-1-1995-302
    [10]NONLINEAR ANALYSIS OF DYNAMIC STABILITY FOR GENERALLY LAMIN-ARED CIRCULAR CYLINDRICAL THICK SHELLS[J]. Chinese Journal of Theoretical and Applied Mechanics, 1995, 27(5): 624-630. DOI: 10.6052/0459-1879-1995-5-1995-476
  • Cited by

    Periodical cited type(9)

    1. 苑光耀,王俊淞,赵玄烈,耿敬. 基于PINN的二维剪切流圆柱绕流场重构. 力学学报. 2025(02): 436-452 . 本站查看
    2. 韦昌,樊昱晨,周永清,刘欣,李驰,王赫阳. 基于时间权重的物理信息神经网络求解非稳态偏微分方程. 力学学报. 2025(03): 755-766 . 本站查看
    3. 郭远,傅卓佳,闵建,刘肖廷,赵海涛. 课程-迁移学习物理信息神经网络用于长时间非线性波传播模拟. 力学学报. 2024(03): 763-773 . 本站查看
    4. 赵铎阳,曾森. 基于循环神经网络的结构动力学求解方法探究. 低温建筑技术. 2024(05): 69-73 .
    5. 潘小果,王凯,邓维鑫. 基于NTK理论和改进时间因果的物理信息神经网络加速收敛算法. 力学学报. 2024(07): 1943-1958 . 本站查看
    6. 韦昌,樊昱晨,周永清,张超群,刘欣,王赫阳. 基于Runge-Kutta的自回归物理信息神经网络求解偏微分方程. 力学学报. 2024(08): 2482-2493 . 本站查看
    7. 张凌海,周彬,罗毅,冯俊. 物理信息神经网络的一种自适应配置点算法. 力学学报. 2024(10): 3069-3083 . 本站查看
    8. 石剑波. 智能制造系统中设备故障诊断与预测技术研究. 今日制造与升级. 2024(10): 26-28 .
    9. 韦昌,樊昱晨,周永清,刘欣,张超群,王赫阳. 基于龙格库塔法的多输出物理信息神经网络模型. 力学学报. 2023(10): 2405-2416 . 本站查看

    Other cited types(4)

Catalog

    Article Metrics

    Article views (14) PDF downloads (2) Cited by(13)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return