Citation: | Xue Mingde, Xiang Zhihai. Review of thermal-dynamical analysis methods for large space structures. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(9): 2361-2376. DOI: 10.6052/0459-1879-22-171 |
[1] |
Thomson WT, Reiter GS. Attitude drift of space vehicles. The Journal of the Astronautical Sciences, 1960, 7: 29-36
|
[2] |
Etkin B, Hughes PC. Explanation of the anomalous spin behavior of satellites with long flexible antennae. Journal of Spacecraft and Rockets, 1967, 9(4): 1139-1145
|
[3] |
Foster RS. Thermally induced vibrations of spacecraft booms. [PhD Thesis]. Virginia, US: University of Virginia, 1998
|
[4] |
Thornton EA, Kim YA. Thermally induced bending vibrations of a flexible rolled-up solar array. Journal of Spacecraft and Rockets, 1993, 30(4): 438-448 doi: 10.2514/3.25550
|
[5] |
Hawley SA. Hubble space telescope solar array concerns and consequence for service mission 2. Journal of Spacecraft and Rockets, 2016, 53(1): 15-24
|
[6] |
Corbacho VV, Kuiper H, Gill E. Review on thermal and mechanical challenges in the development of deployable space optics. Journal of Astronomical Telescopes, Instruments, and Systems, 2020, 6(1): 010902
|
[7] |
Boley BA. Thermally induced vibrations of bars. Journal of the Aeronautical Sciences, 1956, 23(2): 179-181
|
[8] |
Boley BA. Approximate analyses of thermally induced vibrations of bars and plates. Journal of Applied Mechanics, 1972, 39(3): 212-216
|
[9] |
Boley BA. A communication quasi una fantasìa. Mechanics Research Communications, 2015, 68(9): 2-4
|
[10] |
Augusti G. Instability of struts subject to radiant heat. Meccanica, 1968, 3(9): 167-176
|
[11] |
Donohue JH, Frisch HP. Thermoelastic instability of open-section booms. NASA Technical Note, D-5310, 1969
|
[12] |
Yu YY. Thermally induced vibration and flutter of a flexible boom. Journal of Spacecraft and Rockets, 1969, 6(8): 902-910 doi: 10.2514/3.29725
|
[13] |
Graham JD. Solar induced bending vibrations of a flexible member. AIAA Journal, 1970, 8(11): 2031-2036 doi: 10.2514/3.6042
|
[14] |
Rimrott F, Abdel-Sayed R. Flexural thermal flutter under laboratory conditions. Transactions of the Canadian Society for Mechanical Engineering, 1976, 4(4): 189-196 doi: 10.1139/tcsme-1976-0027
|
[15] |
Zhang JH, Xiang ZH, Liu YH, et al. Stability of thermally induced vibration of a bar subjected to solar heating. AIAA Journal, 2014, 52(3): 660-665 doi: 10.2514/1.J052574
|
[16] |
Mason JB. Analysis of thermally induced structural vibrations by finite element techniques. NASA Technical Memorandum, X-321-68-333, 1968
|
[17] |
Namburu RR, Tamma KK. Thermally-induced structural dynamic response of flexural configurations influenced by linear/non-linear thermal effects. AIAA Paper, 91-1175, 1991
|
[18] |
Givoli D, Rand O. Harmonic finite element thermo-elastic analysis of space frames and trusses. Journal of Thermal Stresses, 1993, 16(3): 233-248 doi: 10.1080/01495739308946228
|
[19] |
Xue MD, Ding Y. Two kinds of tube elements for transient thermal–structural analysis of large space structures. International Journal for Numerical Methods in Engineering, 2004, 59(10): 1335-1353 doi: 10.1002/nme.918
|
[20] |
Xue MD, Duan J, Xiang ZH. Thermally-induced bending-torsion coupling vibration of large scale space structures. Computational Mechanics, 2007, 40(4): 707-723 doi: 10.1007/s00466-006-0134-x
|
[21] |
Duan J, Xiang ZH, Xue MD. Thermal-dynamic coupling analysis of large space structures considering geometric nonlinearity. International Journal of Structural Stability and Dynamics, 2008, 8(4): 569-596 doi: 10.1142/S0219455408002806
|
[22] |
Thornton EA. Thermal Structures for Aerospace Applications. Virginia, US: AIAA Education Series, 1996
|
[23] |
胡斌, 李创, 相萌等. 可展开空间光学望远镜技术发展及展望. 红外与激光工程, 2021, 50(11): 20210199
Hu Bin, Li Chuang, Xiang Meng, et al. Development and prospects of deployable space optical telescope technology. Infrared and Laser Engineering, 2021, 50(11): 20210199(in Chinese))
|
[24] |
Chamberlain MK, Kiefer SH, LaPointe M, et al. On-orbit flight testing of the Roll-Out Solar Array. Acta Astronautica, 2021, 179(2): 407-414
|
[25] | |
[26] |
Su XM, Zhang JH, Wang J, et al. Experimental investigation of the thermally-induced vibration of a space boom section. Science China Physics, Mechanics & Astronomy, 2015, 58(4): 044601
|
[27] |
Fan C, Bi YQ, Wang J, et al. Experimental investigation of heat flux characteristics on the thermally induced vibration of a slender thin-walled bar. International Journal of Applied Mechanics, 2020, 12(5): 2050053 doi: 10.1142/S1758825120500532
|
[28] |
Wang J, Jin DG, Fan C, et al. Predicting the on-orbit thermally induced vibration through the integrated numerical and experimental approach. Acta Astronautica, 2022, 192(3): 341-350
|
[29] |
Jin DG, Fan C, Wang J, et al. Experimental verification of the thermal flutter criterion for a slender cantilever boom. AIAA Journal, 2022, in press
|
[30] |
Liu L, Sun SP, Cao DQ, et al. Thermal-structural analysis for flexible spacecraft with single or double solar panels: A comparison study. Acta Astronautica, 2019, 154(1): 33-43
|
[31] |
Cao YT, Cao DQ, He GQ, et al. Thermal alternation induced vibration analysis of spacecraft with lateral solar arrays in orbit. Applied Mathematical Modelling, 2020, 86(10): 166-184
|
[32] |
丁勇. 大型空间结构的热-结构有限元分析. [博士论文]. 北京: 清华大学, 2002
Ding Yong. Thermal-structural analysis of large space structure with finite element method. [PhD Thesis]. Beijing: Tsinghua University, 2002 (in Chinese))
|
[33] |
段进. 大型柔性空间结构的热-动力学耦合有限元分析. [博士论文]. 北京: 清华大学, 2007
Duan Jin. The thermal-dynamic coupling analysis of large flexible space structures by finite element method. [PhD Thesis]. Beijing: Tsinghua University, 2007 (in Chinese))
|
[34] |
袁小德. 两种热致响应分析新单元及弯扭耦合热颤振准则. [硕士论文]. 北京: 清华大学, 2019
Yuan Xiaode. Two new elements for thermally-induced responses and the bending and torsion coupled thermal-flutter criterion. [Master Thesis]. Beijing: Tsinghua University, 2019 (in Chinese))
|
[35] |
Huebner KH, Donald LD, Douglas ES, et al. Finite Element Method for Engineers, 4th ed. New York: John Wiley & Sons Inc, 2001
|
[36] |
Nour-Omid B. Lanczos method for heat conduction analysis. International Journal for Numerical Methods in Engineering, 1987, 24(1): 251-262 doi: 10.1002/nme.1620240117
|
[37] |
程乐锦. 大型空间结构的热诱发振动有限元分析. [博士论文]. 北京: 清华大学, 2003
Cheng Lejin. Finite element analysis for thermally induced vibrations of large space structures. [PhD Thesis]. Beijing: Tsinghua University, 2003 (in Chinese))
|
[38] |
李伟. 卫星刚体-结构附件耦合系统热-动力学有限元分析. [博士论文]. 北京: 清华大学, 2007
Li Wei. The thermal-dynamic analysis of satellites with flexible appendages by finite element method. [PhD Thesis]. Beijing: Tsinghua University, 2007 (in Chinese))
|
[39] |
Yang YB, Chiou HT. Rigid body motion test for nonlinear analysis with bar elements. Journal of Engineering Mechanics, 1987, 113(9): 1404-1419 doi: 10.1061/(ASCE)0733-9399(1987)113:9(1404)
|
[40] |
黄彦文. 含开口薄壁杆件的大型空间结构热诱发弯扭耦合振动有限元分析. [硕士论文]. 北京: 清华大学, 2004
Huang Yanwen. Thermally induced vibration analysis of large space structures including thin-walled open section beam by FEM. [Master Thesis]. Beijing: Tsinghua University, 2004 (in Chinese))
|
[41] |
黄彦文, 薛明德, 程乐锦等. 含开口薄壁杆的大型空间结构热诱发弯扭振动. 清华大学学报(自然科学版), 2005, 45(2): 262-266 doi: 10.3321/j.issn:1000-0054.2005.02.032
Huang Yanwen, Xue Mingde, Cheng Lejin, et al. Thermally induced vibrations of large space structures including thin-walled open bar sections. Journal of Tsinghua University (Sci and Tech), 2005, 45(2): 262-266(in Chinese)) doi: 10.3321/j.issn:1000-0054.2005.02.032
|
[42] |
黄克智, 薛明德, 陆明万. 张量分析, 第3版. 北京: 清华大学出版社, 2020: 71
Huang Kezhi, Xue Mingde, Lu Mingwan. Tensor Analysis, 3rd ed. Beijing: Tsinghua University Press, 2020: 71 (in Chinese)
|
[43] |
程乐锦, 薛明德, 唐羽烨等. 大型空间结构的热-结构动力学分析. 应用力学学报, 2004, 21(2): 1-9 doi: 10.3969/j.issn.1000-4939.2004.02.001
Cheng Lejin, Xue Mingde, Tang Yuye, et al. Thermal-dynamic analysis of large scale space structures by FEM. Chinese Journal of Applied Mechanics, 2004, 21(2): 1-9(in Chinese)) doi: 10.3969/j.issn.1000-4939.2004.02.001
|
[44] |
中国大百科全书, 力学卷, 运动稳定性. 北京: 中国大百科全书出版社, 1985: 570-573
Encyclopedia of China, Mechanics, Stability of Motion. Beijing: Encyclopedia of China Publishing House, 1985: 570-573 (in Chinese))
|
[45] |
Zhang JH, Wang PH, Liu YF, et al. Can boom-supported solar sails flutter? AIAA Journal, 2020, 58(10): 4600-4603
|
[46] |
Yuan XD, Xiang ZH. A thermal-flutter criterion for an open thin-walled circular cantilever bar subject to solar heating. Chinese Journal of Aeronautics, 2018, 31(9): 1902-1909 doi: 10.1016/j.cja.2018.07.002
|
[47] |
Shen Z, Hu G. Thermoelastic−structural analysis of space Thin-Walled beam under solar flux. AIAA Journal, 2019, 57(4): 1781-1785 doi: 10.2514/1.J057793
|
[48] |
Li W, Xiang ZH, Chen L, et al. Thermal flutter analysis of large-scale space structures based on finite element method. International Journal for Numerical Methods in Engineering, 2007, 69(5): 887-907 doi: 10.1002/nme.1793
|
[49] |
樊孝清. 舱体-挠性附件系统的热诱发振动分析与控制. [硕士论文]. 北京: 清华大学, 2016
Fan Xiaoqing. Thermally induced vibration analysis and control of the rigid hub-flexible attachment system. [Master Thesis]. Beijing: Tsinghua University, 2016 (in Chinese)
|
[50] |
Zhang JH, Xiang ZH, Liu YH. Control of the thermally induced vibration of space structures by using heaters. Journal of Spacecraft and Rockets, 2014, 51(5): 1454-1463 doi: 10.2514/1.A32601
|
[51] |
Liu CC, Jing XJ, Daley S, et al. Recent advances in micro-vibration isolation. Mechanical Systems and Signal Processing, 2015, 56-57: 55-80 doi: 10.1016/j.ymssp.2014.10.007
|
[52] |
Fan LJ, Xiang ZH, Xue MD, et al. Robust optimization of thermal-dynamic coupling systems using a kriging model. Journal of Spacecraft and Rockets, 2010, 47(6): 1029-1037 doi: 10.2514/1.49307
|
[53] |
Fan LJ, Xiang ZH. Suppressing the thermally induced vibration of large-scale space structures via structural optimization. Journal of Thermal Stresses, 2015, 38(1): 1-21 doi: 10.1080/01495739.2014.950529
|
[54] |
Levine M, Fanson J. Advanced thermo-structural technologies for the NASA terrestrial planet finder mission. Structural Control and Health Monitoring, 2006, 13(1): 190-209 doi: 10.1002/stc.136
|
[1] | Wang Wei, Wang Weimin, Ren Yinglin, Wang Jiale, Li Weibo. DYNAMIC STABILITY INVESTIGATION AND INFLUENTIAL FACTOR ANALYSIS OF PARALLEL AXIS WHIRL ROTOR PARTIALLY FILLED WITH VISCOUS FLUID[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(3): 644-658. DOI: 10.6052/0459-1879-23-553 |
[2] | Zhao Xinxin, Shi Jinguang, Wang Zhongyuan, Zhang Ning. DYNAMIC STABILITY AND INFLUENCE FACTORS OF THE WHOLE TRAJECTORY OF FIXED CANARD DUAL-SPIN PROJECTILES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(5): 1364-1374. DOI: 10.6052/0459-1879-21-636 |
[3] | Li Yuan, Di Qinfeng, Wang Wenchang, Hua Shuai. EVALUATION METHOD AND APPLICATION OF FOAM DYNAMIC STABILITY IN HETEROGENEOUS CORES BASED ON NUCLEAR MAGNETIC RESONANCE TECHNOLOGY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(8): 2205-2213. DOI: 10.6052/0459-1879-21-278 |
[4] | Zhao Jie, Yu Kaiping, Xue Zhong. THE MOTION STABILITY ANALYSIS OF A ROTATING BEAM WITH A RIGID BODY ON ITS END[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(4): 606-613. DOI: 10.6052/0459-1879-12-343 |
[5] | Liu Yanzhu. EXACT DYNAMICAL MODEL OF AXIALLY MOVING BEAM WITH LARGE DEFORMATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(5): 832-838. DOI: 10.6052/0459-1879-12-117 |
[6] | Xiaoyan Ma, Yao Cheng. Stability of stationary motion for a rigid body with a flexible beam[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(6): 813-821. DOI: 10.6052/0459-1879-2007-6-2006-322 |
[7] | Zhaolin Wang. ON THE STABILITY OF DISSIPATIVE MECHANICAL SYSTEMS WITH CONSTRAINT DAMPING[J]. Chinese Journal of Theoretical and Applied Mechanics, 1997, 29(4): 501-505. DOI: 10.6052/0459-1879-1997-4-1995-259 |
[8] | 一类刚-柔耦合系统的建模与稳定性研究[J]. Chinese Journal of Theoretical and Applied Mechanics, 1997, 29(4): 439-447. DOI: 10.6052/0459-1879-1997-4-1995-249 |
[9] | 有孔隙的耦合热弹性体动力学的一些基本原理[J]. Chinese Journal of Theoretical and Applied Mechanics, 1996, 28(1): 55-65. DOI: 10.6052/0459-1879-1996-1-1995-302 |
[10] | NONLINEAR ANALYSIS OF DYNAMIC STABILITY FOR GENERALLY LAMIN-ARED CIRCULAR CYLINDRICAL THICK SHELLS[J]. Chinese Journal of Theoretical and Applied Mechanics, 1995, 27(5): 624-630. DOI: 10.6052/0459-1879-1995-5-1995-476 |
1. |
苑光耀,王俊淞,赵玄烈,耿敬. 基于PINN的二维剪切流圆柱绕流场重构. 力学学报. 2025(02): 436-452 .
![]() | |
2. |
韦昌,樊昱晨,周永清,刘欣,李驰,王赫阳. 基于时间权重的物理信息神经网络求解非稳态偏微分方程. 力学学报. 2025(03): 755-766 .
![]() | |
3. |
郭远,傅卓佳,闵建,刘肖廷,赵海涛. 课程-迁移学习物理信息神经网络用于长时间非线性波传播模拟. 力学学报. 2024(03): 763-773 .
![]() | |
4. |
赵铎阳,曾森. 基于循环神经网络的结构动力学求解方法探究. 低温建筑技术. 2024(05): 69-73 .
![]() | |
5. |
潘小果,王凯,邓维鑫. 基于NTK理论和改进时间因果的物理信息神经网络加速收敛算法. 力学学报. 2024(07): 1943-1958 .
![]() | |
6. |
韦昌,樊昱晨,周永清,张超群,刘欣,王赫阳. 基于Runge-Kutta的自回归物理信息神经网络求解偏微分方程. 力学学报. 2024(08): 2482-2493 .
![]() | |
7. |
张凌海,周彬,罗毅,冯俊. 物理信息神经网络的一种自适应配置点算法. 力学学报. 2024(10): 3069-3083 .
![]() | |
8. |
石剑波. 智能制造系统中设备故障诊断与预测技术研究. 今日制造与升级. 2024(10): 26-28 .
![]() | |
9. |
韦昌,樊昱晨,周永清,刘欣,张超群,王赫阳. 基于龙格库塔法的多输出物理信息神经网络模型. 力学学报. 2023(10): 2405-2416 .
![]() |