Citation: | Ren Yi, Zhang Hao, Zhang Wang, Liu Haidong, Li Zhao, Zhang Mangong. Axial elastic wave propagation characteristics of pyramid lattice cylindrical structure. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(10): 2717-2725. DOI: 10.6052/0459-1879-22-168 |
[1] |
Evans AG, Hutchinson JW, Fleck NA, et al. The topological design of multifunctional cellular metals. Progress in Materials Science, 2001, 46(3): 309-327
|
[2] |
Zhang QC, Yang XH, Li P, et al. Bioinspired engineering of honeycomb structure−Using nature to inspire human innovation. Progress in Materials Science, 2015, 74: 332-400
|
[3] |
Pan C, Han YF, Lu JP. Design and optimization of lattice structures: A review. Applied Sciences, 2020, 10(18): 6374 doi: 10.3390/app10186374
|
[4] |
Vasiliev VV, Razin AF. Anisogrid composite lattice structures for spacecraft and aircraft applications. Composite Structures, 2006, 76(1-2): 182-189 doi: 10.1016/j.compstruct.2006.06.025
|
[5] |
Wang C, Zhu JH, Wu MQ, et al. Multi-scale design and optimization for solid-lattice hybrid structures and their application to aerospace vehicle components. Chinese Journal of Aeronautics, 2021, 34(5): 386-398 doi: 10.1016/j.cja.2020.08.015
|
[6] |
雷鹏福. 点阵结构的航空构件轻量化设计及优化技术研究. [硕士论文]. 南京: 南京航空航天大学, 2020
Lei Pengfu. Research on lightweight design and optimization technology of aerostructure components with porous structure. [Master Thesis]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020 (in Chinese))
|
[7] |
Yin S, Chen HY, Wu YB, et al. Introducing composite lattice core sandwich structure as an alternative proposal for engine hood. Composite Structures, 2018, 201: 131-140
|
[8] |
张钱城, 卢天健, 闻婷. 轻质高强点阵金属材料的制备及其力学性能强化的研究进展. 力学进展, 2010, 40(2): 157-168 (Zhang Qiancheng, Lu Tianjian, Wen Ting. Research progress on the preparation of lightweight high-strength lattice metal materials and their mechanical properties enhancement. Advances in Mechanics, 2010, 40(2): 157-168 (in Chinese) doi: 10.6052/1000-0992-2010-2-J2008-152
|
[9] |
Langley RS. The response of two-dimensional periodic structures to point harmonic forcing. Journal of Sound and Vibration, 1996, 197(4): 447-469 doi: 10.1006/jsvi.1996.0542
|
[10] |
Zhu ZW, Zhu ZC, Tong SZ, et al. Elastic wave propagation in hierarchical lattices with convex and concave hexagons stacked vertexes. The Journal of the Acoustical Society of America, 2019, 146(3): 1519-1519 doi: 10.1121/1.5124480
|
[11] |
Zhang H, Sun FF, Fan HL, et al. Free vibration behaviors of carbon fiber reinforced lattice-core sandwich cylinder. Composites Science & Technology, 2014, 100: 26-33
|
[12] |
Li M, Du SJ, Li FM, et al. Vibration characteristics of novel multilayer sandwich beams: Modelling, analysis and experimental validations. Mechanical Systems and Signal Processing, 2020, 142: 106799 doi: 10.1016/j.ymssp.2020.106799
|
[13] |
Zhang ZJ, Han B, Zhang QC, et al. Free vibration analysis of sandwich beams with honeycomb-corrugation hybrid cores. Composite Structures, 2017, 171: 335-344 doi: 10.1016/j.compstruct.2017.03.045
|
[14] |
Martinsson PG, Mochan AB. Vibrations of lattice structures and phononic band gaps. Quarterly Journal of Mechanics and Applied Mathematics, 2003, 56(1): 45-64 doi: 10.1093/qjmam/56.1.45
|
[15] |
Wen JH, Yu DL, Wang G, et al. Directional propagation characteristics of flexural wave in two-dimensional periodic grid-like structures. Journal of Physics D: Applied Physics, 2008, 41(13): 135505 doi: 10.1088/0022-3727/41/13/135505
|
[16] |
Wang YF, Wang YS, Zhang CZ. Bandgaps and directional propagation of elastic waves in 2D square zigzag lattice structures. Journal of Physics D: Applied Physics, 2014, 47(48): 485102 doi: 10.1088/0022-3727/47/48/485102
|
[17] |
An XY, Lai CL, He WP, et al. Three-dimensional meta-truss lattice composite structures with vibration isolation performance. Extreme Mechanics Letters, 2019, 33: 100577 doi: 10.1016/j.eml.2019.100577
|
[18] |
Liu W, Chen JW, Su XY. Local resonance phononic band gaps in modified two-dimensional lattice materials. Acta Mechanica Sinica, 2012, 28(3): 659-669 doi: 10.1007/s10409-012-0031-9
|
[19] |
Matlack KH, Bauhofer A, Krödel S, et al. Composite 3D-printed metastructures for low-frequency and broadband vibration absorption. Proceedings of the National Academy of Sciences, 2016, 113(30): 8386-8390 doi: 10.1073/pnas.1600171113
|
[20] |
Cao XF, Duan SY, Liang J, et al. Mechanical properties of an improved 3D-printed rhombic dodecahedron stainless steel lattice structure of variable cross section. International Journal of Mechanical Sciences, 2018, 145: 53-63 doi: 10.1016/j.ijmecsci.2018.07.006
|
[21] |
Junyi L, Balint DS. A parametric study of the mechanical and dispersion properties of cubic lattice structures. International Journal of Solids and Structures, 2016, 91: 55-71 doi: 10.1016/j.ijsolstr.2016.04.028
|
[22] |
Wu ZJ, Li FM, Zhang CZ. Vibration band-gap properties of three-dimensional Kagome lattices using the spectral element method. Journal of Sound and Vibration, 2015, 341: 162-173 doi: 10.1016/j.jsv.2014.12.038
|
[23] |
Wu ZJ, Li FM. Spectral element method and its application in analysing the vibration band gap properties of two-dimensional square lattices. Journal of Vibration and Control, 2016, 22(3): 710-721 doi: 10.1177/1077546314531805
|
[24] |
Syam WP, Wu JW, Zhao B, et al. Design and analysis of strut-based lattice structures for vibration isolation. Precision Engineering, 2018, 52: 494-506 doi: 10.1016/j.precisioneng.2017.09.010
|
[25] |
Wang TA, Li S, Nutt SR. Optimal design of acoustical sandwich panels with a genetic algorithm. Applied Acoustics, 2009, 70(3): 416-425 doi: 10.1016/j.apacoust.2008.06.003
|
[26] |
Yang JS, Xiong J, Ma L, et al. Study on vibration damping of composite sandwich cylindrical shell with pyramidal truss-like cores. Composite Structures, 2014, 117: 362-372 doi: 10.1016/j.compstruct.2014.06.042
|
[27] |
Yang CM, Jin GY, Liu ZG, et al. Vibration and damping analysis of thick sandwich cylindrical shells with a viscoelastic core under arbitrary boundary conditions. International Journal of Mechanical Sciences, 2015, 92: 162-177 doi: 10.1016/j.ijmecsci.2014.12.003
|
[28] |
Zhai YC, Su JM, Liang S. Damping properties analysis of composite sandwich doubly-curved shells. Composites Part B: Engineering, 2019, 161: 252-262 doi: 10.1016/j.compositesb.2018.10.086
|
[29] |
曾旭东, 王大川, 陈辉. Rhinoceros & Grasshopper参数化建模. 武汉: 华中科技大学出版社, 2011
Zeng Xudong, Wang Dachuan, Chen Hui. Rhinoceros & Grasshopper Parametric Modeling. Wuhan: Huazhong University of Science and Technology Press, 2011 (in Chinese))
|
[30] |
石志飞, 程志宝, 向宏军. 周期结构理论及其在隔震减振中的应用. 北京: 科学出版社, 2017: 206-210
Shi Zhifei, Chen Zhibao, Xiang Hongjun. Periodic Structure: Theory and Application to Seismic Isolation and Vibration Reduction. Beijing: Science Press, 2017: 206-210 (in Chinese))
|
[31] |
Cheng YT, Cheng CM. Scaling, dimensional analysis, and indentation measurements. Materials Science & Engineering R, 2004, 44(4-5): 91-149
|
[32] |
江山. 低频宽带隙声子晶体研究. [博士论文]. 武汉: 华中科技大学, 2018
Jiang Shan. Analysis on phononic crystals with low-frequency and wide band gaps. [PhD Thesis]. Wuhan: Huazhong University of Science and Technology, 2018 (in Chinese))
|
[33] |
温熙森, 温激鸿, 郁殿龙等. 声子晶体. 北京: 国防工业出版社, 2009: 221-225
Wen Xisen, Wen Jihong, Yu Dianlong, et al. Phononic Crystals. Beijing: National Defence Industry Press, 2009: 221-225 (in Chinese))
|
[34] |
朱席席, 肖勇, 温激鸿等. 局域共振型加筋板的弯曲波带隙与减振特性. 物理学报, 2016, 17: 15 (Zhu Xixi, Xiao Yong, Wen Jihong, et al. Flexural wave band gaps and vibration reduction properties of a locally resonant stiffened plate. Acta Physica Sinica, 2016, 17: 15 (in Chinese)
|
[35] |
宋卓斐, 王自东, 王艳林等. 一维杆状声子晶体的带隙特性. 振动与冲击, 2010, 29(2): 145-148 (Song Zhuofei, Wang Zidong, Wang Yanlin, et al. Bandgap property of a one dimension rod photonic crystal. Journal of Vibration and Shock, 2010, 29(2): 145-148 (in Chinese) doi: 10.3969/j.issn.1000-3835.2010.02.033
|