Citation: | Wu Junchao, Wu Xinyu, Zhao Yaobing, Wang Dongdong. A consistent and efficient method for imposing meshfree essential boundary conditions via hellinger-reissner variational principle. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(12): 3283-3296. DOI: 10.6052/0459-1879-22-151 |
[1] |
Belytschko T, Lu YY, Gu L. Element-free Galerkin methods. International Journal for Numerical Methods in Engineering, 1994, 37(2): 229-256 doi: 10.1002/nme.1620370205
|
[2] |
Liu WK, Jun S, Zhang YF. Reproducing kernel particle methods. International Journal for Numerical Methods in Fluids, 1995, 20(8-9): 1081-1106 doi: 10.1002/fld.1650200824
|
[3] |
张雄, 刘岩, 马上. 无网格法的理论及应用. 力学进展, 2009, 39(1): 1-36 (Zhang Xiong, Liu Yan, Ma Shang. Meshfree methods and their applications. Advances in Mechanics, 2009, 39(1): 1-36 (in Chinese) doi: 10.3321/j.issn:1000-0992.2009.01.001
|
[4] |
Chen JS, Hillman M, Chi SW. Meshfree methods: progress made after 20 years. Journal of Engineering Mechanics-ASCE, 2017, 143(4): 04017001 doi: 10.1061/(ASCE)EM.1943-7889.0001176
|
[5] |
Belytschko T, Krongauz Y, Organ D, et al. Meshless methods: An overview and recent developments. Computer Methods in Applied Mechanics and Engineering, 1996, 139(1-4): 3-47 doi: 10.1016/S0045-7825(96)01078-X
|
[6] |
高效伟, 徐兵兵, 吕军等. 自由单元法及其在结构分析中的应用. 力学学报, 2019, 51(3): 703-713 (Gao Xiaowei, Xu Bingbing, Lü Jun, et al. Free element method and its application in structural analysis. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 703-713 (in Chinese) doi: 10.6052/0459-1879-19-011
|
[7] |
王莉华, 阮剑武. 配点型无网格法理论和研究进展. 力学季刊, 2021, 42: 613-632 (Wang Lihua, Ruan Jianwu. Theory and research progress of the collocation-type meshfree methods. Chinese Quarterly of Mechanics, 2021, 42: 613-632 (in Chinese)
|
[8] |
陈嵩涛, 段庆林, 马今伟. 几何非线性分析的高效高阶无网格法. 计算力学学报, 2020, 37(6): 694-699 (Chen Songtao, Duan Qinglin, Ma Jinwei. Efficient high order meshfree method for geometrically non-linear analysis. Chinese Journal of Computational Mechanics, 2020, 37(6): 694-699 (in Chinese)
|
[9] |
邓立克, 王东东, 王家睿等. 薄板分析的线性基梯度光滑伽辽金无网格法. 力学学报, 2019, 51(3): 690-702 (Deng Like, Wang Dongdong, Wang Jiarui, et al. A gradient smoothing Galerkin meshfree method for thin plate analysis with linear basis function. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 690-702 (in Chinese) doi: 10.6052/0459-1879-19-004
|
[10] |
高欣, 段庆林, 李书卉等. 裂纹问题的一致性高阶无网格法. 计算力学学报, 2018, 35(3): 1007-4708 (Gao Xin, Duan Qinglin, Li Shuhui et al. Consistent high order meshfree method for crack problems. Chinese Journal of Computational Mechanics, 2018, 35(3): 1007-4708 (in Chinese)
|
[11] |
Fernández-Méndez S, Huerta A. Imposing essential boundary conditions in mesh-free methods. Computer Methods in Applied Mechanics and Engineering, 2004, 193(12-14): 1257-1275 doi: 10.1016/j.cma.2003.12.019
|
[12] |
曹阳, 陈莹婷, 姚林泉. 无单元Galerkin方法施加本质边界条件研究进展. 力学季刊, 2020, 41(4): 5-26 (Cao Yang, Chen Yingting, Yao Linquan. Advances in implementation of essential boundary conditions for element-free Galerkin method. Chinese Quarterly of Mechanics, 2020, 41(4): 5-26 (in Chinese)
|
[13] |
Chen JS, Wu CT, Yoon S, et al. A stabilized conforming nodal integration for Galerkin mesh-free methods. International Journal for Numerical Methods in Engineering, 2001, 50(2): 435-466 doi: 10.1002/1097-0207(20010120)50:2<435::AID-NME32>3.0.CO;2-A
|
[14] |
Wu J, Wang D. An accuracy analysis of Galerkin meshfree methods accounting for numerical integration. Computer Methods in Applied Mechanics and Engineering, 2021, 375: 113631 doi: 10.1016/j.cma.2020.113631
|
[15] |
Kaljević I, Saigal S. An improved element free Galerkin formulation. International Journal for Numerical Methods in Engineering, 1997, 40(16): 2953-2974 doi: 10.1002/(SICI)1097-0207(19970830)40:16<2953::AID-NME201>3.0.CO;2-S
|
[16] |
Liu D, Cheng YM. The interpolating element-free Galerkin (IEFG) method for three-dimensional potential problems. Engineering Analysis with Boundary Elements, 2019, 108: 115-123 doi: 10.1016/j.enganabound.2019.08.021
|
[17] |
陈莘莘, 周文博, 胡常福. 基于插值型无单元Galerkin法的复合材料层合板自由振动分析. 应用力学学报, 2021, 38(3): 1280-1285 (Chen Shenshen, Zhou Wenbo, Hu Changfu. Free vibration analysis of laminated composite plates based on the interpolating element-free Galerkin method. Chinese Journal of Applied Mechanics, 2021, 38(3): 1280-1285 (in Chinese)
|
[18] |
程玉民, 彭妙娟, 李九红. 复变量移动最小二乘法及其应用. 力学学报, 2005, 37(6): 719-723 (Cheng Yumin, Peng Miaojuan, Li Jiuhong. The complex variable moving least-square approximation and its application. Chinese Journal of Theoretical and Applied Mechanics, 2005, 37(6): 719-723 (in Chinese) doi: 10.3321/j.issn:0459-1879.2005.06.007
|
[19] |
黄娟, 姚林泉. 改进广义移动最小二乘近似的无网格法. 力学季刊, 2007, 28(3): 461-470 (Huang Juan, Yao Linquan. Meshless method with modifying generalized moving least squares approximation. Chinese Quarterly of Mechanics, 2007, 28(3): 461-470 (in Chinese) doi: 10.3969/j.issn.0254-0053.2007.03.018
|
[20] |
Chen JS, Wang HP. New boundary condition treatments in meshfree computation of contact problems. Computer Methods in Applied Mechanics and Engineering, 2000, 187(3): 441-468
|
[21] |
Duan Q, Li X, Zhang H, et al. Second-order accurate derivatives and integration schemes for meshfree methods. International Journal for Numerical Methods in Engineering, 2012, 92(4): 399-424 doi: 10.1002/nme.4359
|
[22] |
Duan Q, Gao X, Wang B, et al. Consistent element-free Galerkin method. International Journal for Numerical Methods in Engineering, 2014, 99(2): 79-101 doi: 10.1002/nme.4661
|
[23] |
Chen JS, Hillman M, Rüter M. An arbitrary order variationally consistent integration for Galerkin meshfree methods. International Journal for Numerical Methods in Engineering, 2013, 95(5): 387-418 doi: 10.1002/nme.4512
|
[24] |
Wang D, Wu J. An efficient nesting sub-domain gradient smoothing integration algorithm with quadratic exactness for Galerkin meshfree methods. Computer Methods in Applied Mechanics and Engineering, 2016, 298: 485-519 doi: 10.1016/j.cma.2015.10.008
|
[25] |
Wang D, Wu J. An inherently consistent reproducing kernel gradient smoothing framework toward efficient Galerkin meshfree formulation with explicit quadrature. Computer Methods in Applied Mechanics and Engineering, 2019, 349: 628-672 doi: 10.1016/j.cma.2019.02.029
|
[26] |
吴俊超, 邓俊俊, 王家睿等. 伽辽金型无网格法的数值积分方法. 固体力学学报, 2016, 3(37): 208-233 (Wu Junchao, Deng Junjun, Wang Jiarui, et al. A review of numerical integration approaches for Galerkin meshfree methods. Chinese Journal of Solid Mechanics, 2016, 3(37): 208-233 (in Chinese)
|
[27] |
Hillman M, Lin K. Consistent weak forms for meshfree methods: Full realization of h-refinement, p-refinement, and a-refinement in strong-type essential boundary condition enforcement. Computer Methods in Applied Mechanics and Engineering, 2021, 373: 113448 doi: 10.1016/j.cma.2020.113448
|
[28] |
Lu YY, Belytschko T, Gu L. A new implementation of the element free Galerkin method. Computer Methods in Applied Mechanics and Engineering, 1994, 113(3-4): 397-414 doi: 10.1016/0045-7825(94)90056-6
|
[29] |
Zhu T, Atluri SN. A modified collocation method and a penalty formulation for enforcing the essential boundary conditions in the element free Galerkin method. Computational Mechanics, 1998, 21(3): 211-222 doi: 10.1007/s004660050296
|
[30] |
钱伟长. 广义变分原理. 北京: 知识出版社, 1985
Qian Weichang. Generalized Variational Principles. Beijing: Knowledge Press, 1985 (in Chinese)
|
[31] |
Embar A, Dolbow J, Harari I. Imposing dirichlet boundary conditions with Nitsche's method and spline-based finite elements. International Journal for Numerical Methods in Engineering, 2010, 87(7): 877-898
|
[32] |
Timoshenko S, Goodier J. Theory of Elasticity. New York: McGraw-Hill, 1969
|
1. |
齐栋梁. 靶向精细化分析的鲁棒等几何无网格配点法. 力学学报. 2024(08): 2313-2326 .
![]() | |
2. |
侯松阳,王东东,吴振宇,林智炜. 三维20节点六面体和10节点四面体单元的高精度中节点集中质量矩阵. 力学学报. 2023(09): 2043-2055 .
![]() | |
3. |
付赛赛,邓立克,吴俊超,王东东,张灿辉. 再生光滑梯度无网格法动力特性研究. 应用力学学报. 2022(06): 1065-1075 .
![]() |