Citation: | Chen Jiacheng, Chen Tairan, Han Lei, Geng Hao, Tan Shulin. Experimental investigation on dynamic characteristics of liquid nitrogen single bubble in the free field. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(9): 2387-2400. DOI: 10.6052/0459-1879-22-144 |
[1] |
Brennen CE. Cavitation and Bubble Dynamics. Oxford: Oxford University Press, 1995
|
[2] |
季斌, 程怀玉, 黄彪, 罗先武, 彭晓星, 龙新平. 空化水动力学非定常特性研究进展及展望. 力学进展, 2019, 49: 201906 doi: 10.6052/1000-0992-17-012
Ji Bin, Cheng Huaiyu, Huang Biao, Luo Xianwu, Peng Xiaoxing, Long Xinping. Research progresses and prospects of unsteady hydrodynamics characteristics for cavitation. Advances in Mechanics, 2019, 49: 201906 (in Chinese) doi: 10.6052/1000-0992-17-012
|
[3] |
Huang B, Young YL. Combined experimental and computational investigation of unsteady structure of sheet/cloud cavitation. Journal of Fluids Engineering, 2013, 135(7): 071301 doi: 10.1115/1.4023650
|
[4] |
Fan YD, Chen TR, Liang WD, et al. Numerical and theoretical investigations of the cavitation performance and instability for the cryogenic inducer. Renewable Energy, 2022, 184: 291-305 doi: 10.1016/j.renene.2021.11.076
|
[5] |
王一伟, 黄晨光, 杜特专, 方新, 梁乃刚. 航行体垂直出水载荷与空泡溃灭机理分析. 力学学报, 2012, 44(1): 39-48 doi: 10.6052/0459-1879-2012-1-lxxb2011-139
Wang Yiwei, Huang Chenguang, Du Tezhuan, Fang Xin, Liang Naigang. Mechanism analysis about cavitation collapse load of underwater vehicles in a vertical launching process. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(1): 39-48 (in Chinese) doi: 10.6052/0459-1879-2012-1-lxxb2011-139
|
[6] |
Hung CF, Hwangfu JJ. Experimental study of the behaviour of mini-charge underwater explosion bubbles near different boundaries. Journal of Fluid Mechanics, 2010, 651: 55-80
|
[7] |
Zhang AM, Wang SP, Huang C, et al. Influences of initial and boundary conditions on underwater explosion bubble dynamics. European Journal of Mechanics, B/Fluids, 2013, 42: 69-91 doi: 10.1016/j.euromechflu.2013.06.008
|
[8] |
Pröbsting S, Yarusevych S. Laminar separation bubble development on an airfoil emitting tonal noise. Journal of Fluid Mechanics, 2015, 780: 167-191
|
[9] |
程怀玉, 季斌, 龙新平, 槐文信. 空化对叶顶间隙泄漏涡演变特性及特征参数影响的大涡模拟研究. 力学学报, 2021, 53(05): 1268-1287 doi: 10.6052/0459-1879-20-415
Cheng Huaiyu, Ji Bin, Long Xinping, Huai Wenxin. LES investigation on the influence of cavitation on the evolution and characteristics of tip leakage vortex. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(5): 1268-1287 (in Chinese) doi: 10.6052/0459-1879-20-415
|
[10] |
Yang J, Xie T, Liu XH, et al. Study of unforced unsteadiness in centrifugal pump at partial flow rates. Journal of Thermal Science, 2021, 30: 88-99 doi: 10.1007/s11630-019-1241-2
|
[11] |
Wang CM, Xiang L, Tan YH, et al. Experimental investigation of thermal effect on cavitation characteristics in a liquid rocket engine turbopump inducer. Chinese Journal of Aeronautics, 2021, 34(8): 48-57 doi: 10.1016/j.cja.2021.03.035
|
[12] |
黄彪, 樊亚丁, 梁文栋, 吴钦, 王国玉. 诱导轮液氧空化热力学效应数值计算研究. 北京理工大学学报, 2021, 41(01): 53-58
Huang Biao, Fan Yading, Liang Wengdong, WU Qin, Wang Guoyu. Numerical Study on Thermodynamic Effect of the Inducer Cavitation in Liquid Oxygen. Transactions of Beijing Institute of Technology, 2021, 41(01): 53-58 (in Chinese)
|
[13] |
Li DY, Ren ZP, Li Y, et al. Thermodynamic effects on the cavitation flow of a liquid oxygen turbopump. Cryogenics, 2021, 116(6): 103302
|
[14] |
Liu YY, Li XJ, Ge MH, et al. Numerical investigation of transient liquid nitrogen cavitating flows with special emphasis on force evolution and entropy features. Cryogenics, 2021, 113: 103225
|
[15] |
Ito Y, Tsunoda A, Kurishita Y, et al. Experimental visualization of cryogenic backflow vortex cavitation with thermodynamic effects. Journal of Propulsion and Power, 2016, 32(1): 71-82
|
[16] |
Liang WD, Chen TR, Wang GY, et al. Investigation of unsteady liquid nitrogen cavitating flows with special emphasis on the vortex structures using mode decomposition methods. International Journal of Heat and Mass Transfer, 2020, 157: 119880 doi: 10.1016/j.ijheatmasstransfer.2020.119880
|
[17] |
Chen TR, Mu ZD, Huang B, et al. Dynamic instability analysis of cavitating flow with liquid nitrogen in a converging−diverging nozzle. Applied Thermal Engineering, 2021, 192: 116870 doi: 10.1016/j.applthermaleng.2021.116870
|
[18] |
Wei AB, Yu LY, Gao R, et al. Unsteady cloud cavitation mechanisms of liquid nitrogen in convergent−divergent nozzle. Physics of Fluids, 2021, 33: 092116
|
[19] |
Zheng ZY, Wang L, Wei TZ, et al. Experimental investigation of temperature effect on hydrodynamic characteristics of natural cavitation in rotational supercavitating evaporator for desalination. Renewable Energy, 2021, 174: 278-292 doi: 10.1016/j.renene.2021.04.038
|
[20] |
陈家成, 陈泰然, 梁文栋, 谭树林, 耿昊. 收缩扩张管内液氮空化流动演化过程试验研究. 力学学报, 2022, 54(5): 1242-1256 doi: 10.6052/0459-1879-21-614
Chen Jiacheng, Chen Tairan, Liang Wendong, Tan Shulin, Geng Hao. Experimental study on the evolution of liquid nitrogen cavitating flows through converging-diverging nozzle. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(5): 1242-1256 (in Chinese) doi: 10.6052/0459-1879-21-614
|
[21] |
Hord J. Cavitation in liquid cryogens. II–Hydrofoil, NASA Contractor Report, NASA CR–2156, 1973
|
[22] |
Hord J. Cavitation in liquid cryogens. III–Ogives, NASA Contractor Report , NASA CR-2242, 1973
|
[23] |
Ohira K, Nakayama T, Nagai T. Cavitation flow instability of subcooled liquid nitrogen in converging-diverging nozzles. Cryogenics, 2012, 52(1): 35-44 doi: 10.1016/j.cryogenics.2011.11.001
|
[24] |
Zhu JK, Xie HJ, Feng KS, et al. Unsteady cavitation characteristics of liquid nitrogen flows through venturi tube. International Journal of Heat and Mass Transfer, 2017, 112: 544-552 doi: 10.1016/j.ijheatmasstransfer.2017.04.036
|
[25] |
Zhu JK, Wang SH, Zhang XB. Influences of thermal effects on cavitation dynamics in liquid nitrogen through venturi tube. Physics of Fluids, 2020, 32: 012105
|
[26] |
Chen TR, Chen H, Liang WD, et al. Experimental investigation of liquid nitrogen cavitating flows in converging-diverging nozzle with special emphasis on thermal transition. International Journal of Heat and Mass Transfer, 2019, 132: 618-630 doi: 10.1016/j.ijheatmasstransfer.2018.11.157
|
[27] |
Liang WD, Chen TR, Wang GY, et al. Experimental investigations on transient dynamics of cryogenic cavitating flows under different free-stream conditions. International Journal of Heat and Mass Transfer, 2021, 178: 121537 doi: 10.1016/j.ijheatmasstransfer.2021.121537
|
[28] |
Lord Rayleigh OM. On the pressure developed in a liquid during the collapse of a spherical cavity. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1917, 34(200): 94-98 doi: 10.1080/14786440808635681
|
[29] |
Yuan H, Prosperetti A. Gas-liquid heat transfer in a bubble collapsing near a wall. Physics of Fluids, 1997, 9(1): 127-142 doi: 10.1063/1.869153
|
[30] |
Blake JR, Taib BB, Doherty G, Transient cavities near boundaries. Part 1. Rigid boundary. Journal of Fluid Mechanics, 1986, 170: 479-497
|
[31] |
Blake JR, Taib BB, Doherty G. Transient cavities near boundaries part 2. Free surface. Journal of Fluid Mechanics, 1987, 181: 197-212
|
[32] |
Lee M, Klaseboer E, Khoo BC. On the boundary integral method for the rebounding bubble. Journal of Fluid Mechanics, 2007, 570: 407-429 doi: 10.1017/S0022112006003296
|
[33] |
Zhang AM, Li S, Cui J. Study on splitting of a toroidal bubble near a rigid boundary. Physics of Fluids, 2015, 27(6): 809-822
|
[34] |
Supponen O, Obreschkow D, Kobel P, et al. Shock waves from nonspherical cavitation bubbles. Physical Review Fluids, 2017, 2(9): 093601
|
[35] |
Obreschkow D, Tinguely M, Dorsaz N, et al. Universal scaling law for jets of collapsing bubbles. Physical Review Letters, 2011, 107(20): 204501 doi: 10.1103/PhysRevLett.107.204501
|
[36] |
Zhang AM, Cui P, Cui J, et al. Experimental study on bubble dynamics subject to buoyancy. Journal of Fluid Mechanics, 2015, 776: 137-160 doi: 10.1017/jfm.2015.323
|
[37] |
Phan TH, Kadivar E. Thermodynamic effects on single cavitation bubble dynamics under various ambient temperature conditions, Physics of Fluids, 2022, 34: 023318
|
[38] |
Florschuetz LW, Chao BT. On the mechanics of vapor bubble collapse. Journal of Heat Transfer, 1965, 87(2): 209
|
[39] |
Barbaglia MO, Bonetto FJ. Dependence on liquid temperature and purity of light emission characteristics in single cavitation bubble luminescence. Journal of Applied Physics, 2004, 95: 1756-1759
|
[40] |
Takada N, Nakano T, Sasaki K. Formation of cavitation-induced pits on target surface in liquid-phase laser ablation. Applied Physics A-Materials Science & Processing, 2010, 101: 255-258
|
[41] |
Dular M, Coutier-Delgosha O. Thermodynamic effects during growth and collapse of a single cavitation bubble. Journal of Fluid Mechanics, 2013, 736: 44-66 doi: 10.1017/jfm.2013.525
|
[42] |
Tomita Y, Tsubota M, Nagane K, et al. Behavior of laser-induced cavitation bubbles in liquid nitrogen. Journal of Applied Physics, 2000, 88(10): 5993-6001 doi: 10.1063/1.1320028
|
[43] |
Ma XJ, Huang B, Zhao X, et al. Comparisons of spark-charge bubble dynamics near the elastic and rigid boundaries. Ultrasonics Sonochemistry, 2018, 43: 80-90
|
[44] |
Turangan CK, Ong GP, Klaseboer E, et al. Experimental and numerical study of transient bubble-elastic membrane interaction. Journal of Applied Physics, 2006, 100(5): 054910 doi: 10.1063/1.2338125
|
[45] |
Huang GH, Zhang MD, Han L, et al. Physical investigation of acoustic waves induced by the oscillation and collapse of the single bubble. Ultrasonics Sonochemistry, 2021, 72: 105440 doi: 10.1016/j.ultsonch.2020.105440
|
[46] |
Refprop N. Reference fluid thermodynamic and transport properties. NIST Reference Database, Version 9, 2013
|
[47] |
韩磊, 张敏弟, 黄国豪, 黄彪. 自由场空泡溃灭过程能量转化机制研究. 力学学报, 2021, 53(5): 1288-1301 doi: 10.6052/0459-1879-21-006
Han Lei, Zhang Mindi, Huang Guohao, Huang Biao. Energy transformation mechanism of a gas bubble collapse in the free-field. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(5): 1288-1301(in Chinese) doi: 10.6052/0459-1879-21-006
|
[48] |
Plesset SM. On the stability of fluid flows with spherical symmetry. Journal of Applied Physics, 1954, 25(1): 96-99 doi: 10.1063/1.1721529
|
[49] |
Haas JF, Sturtevant B. Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities. Journal of Fluid Mechanics, 1987, 181: 41-76 doi: 10.1017/S0022112087002003
|
[1] | Pang Yunhao, Yu Chao, Kan Qianhua, Kang Guozheng. ELASTOCALORIC PERFORMANCE OF SHAPE MEMORY ALLOY THIN PLATES WITH HOLES: EXPERIMENTAL OBSERVATION AND THEORETICAL MODELING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(9): 2604-2615. DOI: 10.6052/0459-1879-24-089 |
[2] | Chen Xiaodong, Cai Guohui, Wu Erjun, Wang Bo, Su Yu. SPREADING MORPHOLOGIES AND FLUCTUATION CHARACTERISTICS OF LIQUID FILM FORMED BY OBLIQUE IMPINGEMENT OF LIQUID JETS ON WALL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(7): 1992-2003. DOI: 10.6052/0459-1879-23-632 |
[3] | Chen Jiacheng, Chen Tairan, Liang Wendong, Tan Shulin, Geng Hao. EXPERIMENTAL STUDY ON THE EVOLUTION OF LIQUID NITROGEN CAVITATING FLOWS THROUGH CONVERGING-DIVERGING NOZZLE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(5): 1242-1256. DOI: 10.6052/0459-1879-21-614 |
[4] | Qin Mengfei, Shi Wei, Chai Wei, Fu Xing, Li Xin. RESEARCH ON DYNAMIC CHARACTERISTICS OF LARGE-SCALE MONOPILE OFFSHORE WIND TURBINE UNDER TYPHOON EVENT[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(4): 881-891. DOI: 10.6052/0459-1879-21-606 |
[5] | Xu Shun, Zhao Weiwen, Wan Decheng. NUMERICAL STUDY OF DYNAMIC CHARACTERISTICS FOR OFFSHORE WIND TURBINE UNDER COMPLEX ATMOSPHERIC INFLOW[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(4): 872-880. DOI: 10.6052/0459-1879-21-693 |
[6] | Wang Changchang, Wang Guoyu, Huang Biao, Zhang Mindi. EXPERIMENTAL INVESTIGATION OF CAVITATION CHARACTERISTICS AND DYNAMICS IN COMPRESSIBLE TURBULENT CAVITATING FLOWS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(5): 1296-1309. DOI: 10.6052/0459-1879-19-128 |
[7] | Yu Xiaodong, Yuan Tengfei, Li Daige, Qu Hang, Zheng Xuhang. DYNAMIC CHARACTERISTICS OF HYDROSTATIC THRUST BEARING WITH DOUBLE RECTANGULAR CAVITY UNDER EXTREME WORKING CONDITION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(4): 899-907. DOI: 10.6052/0459-1879-18-041 |
[8] | Zhao Yu, Wang Guoyu, Huang Biao, Hu Changli, Chen Guanghao, Wu Qin. STUDY OF TURBULENT VORTEX AND HYDRAULIC DYNAMICS IN TRANSIENT SHEET/CLOUD CAVITATING FLOWS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(2): 191-200. DOI: 10.6052/0459-1879-13-177 |
[9] | Experimental observations of inception cavitation vortices around a hydrofoils[J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(4): 547-552. DOI: 10.6052/0459-1879-2006-4-2005-020 |
[10] | An experimental investigation on coherent structures in near wall region of channel turbulent flow using DPIV[J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(2): 236-245. DOI: 10.6052/0459-1879-2006-2-2005-119 |