EI、Scopus 收录
中文核心期刊
Zheng Nuo, Liu Hailong. Study on rebound behaviour and maximum spreading of shear-thinning fluid droplet impacting on a hydrophobic surface. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(7): 1934-1942. DOI: 10.6052/0459-1879-22-135
Citation: Zheng Nuo, Liu Hailong. Study on rebound behaviour and maximum spreading of shear-thinning fluid droplet impacting on a hydrophobic surface. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(7): 1934-1942. DOI: 10.6052/0459-1879-22-135

STUDY ON REBOUND BEHAVIOUR AND MAXIMUM SPREADING OF SHEAR-THINNING FLUID DROPLET IMPACTING ON A HYDROPHOBIC SURFACE

  • Received Date: March 29, 2022
  • Accepted Date: May 05, 2022
  • Available Online: May 06, 2022
  • Controlling the non-Newtonian fluid droplet impact process is of profound importance not only in academic interesting but also in the practice applications. However, the existing research about droplet impacting on solid surface mainly focuses on the Newtonian fluid, and the mechanism of non-Newtonian properties on droplet impact dynamics remains to be explored. In this study, the maximum spreading and rebound behaviour of shear-thinning fluids (xanthan gum aqueous solution with mass fraction ≤ 0.03%) droplets impacting on hydrophobic surface have been investigated experimentally. The morphological changes of droplets impact onto hydrophobic surface were captured by means of high-speed imaging technology, the spreading and recoiling process were studied. The experimental results show that under the same We, xanthan gum concentration showed little effect on the maximum spreading of droplets. However, the droplets differed greatly with different concentration in the recoiling stage, and with the increase of xanthan gum concentration three kinds of rebound behaviours, namely partial rebound, full rebound and deposition, were exhibited. The theoretical value of critical dimensionless recoiling height ξc for droplet rebound on the hydrophobic surface was obtained by using the energy conservation law, and the maximum dimensionless recoiling height ξmax of droplets was found to be consistent with the scalar law ξmax ~ αWe, with the slope decreasing with increasing xanthan gum concentration. Based on the effective Reynolds number Reeff, an effective viscosity μeff expression was proposed, and the maximum dimensionless diameter βmax prediction model of shear-thinning fluid droplets was established. The predicted value of βmax obtained by the model achieved good agreement with the experimental measured value over a wide range of We.
  • [1]
    Lohse D. Fundamental fluid dynamics challenges in inkjet printing. Annual Review of Fluid Mechanics, 2022, 54: 349-382
    [2]
    Deng HX, Huang YL, Wu SB, et al. Binder jetting additive manufacturing: Three-dimensional simulation of micro-meter droplet impact and penetration into powder bed. Journal of Manufacturing Processes, 2022, 74: 365-373 doi: 10.1016/j.jmapro.2021.12.019
    [3]
    尚超, 阳倦成, 张杰等. 镓铟锡液滴撞击泡沫金属表面的运动学特性研究. 力学学报, 2019, 51(2): 380-391 (Shang Chao, Yang Juancheng, Zhang Jie, et al. Experimental study on the dynamic characteristics of Galinstan droplet impacting on the metal foam surface. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 380-391 (in Chinese) doi: 10.6052/0459-1879-18-307

    Shang Chao, Yang Juancheng, Zhang Jie, et al. Experimental study on the dynamic characteristics of Galinstan droplet impacting on the metal foam surface. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 380-391 (in Chinese) doi: 10.6052/0459-1879-18-307
    [4]
    孟旭, 王增辉, 蔡志洋等. 强磁场影响下镓液滴撞击固壁的实验研究. 力学学报, 2022, 54(2): 396-404 (Meng Xu, Wang Zenghui, Cai Zhiyang, et al. Experimental study of gallium droplet impacting on solid wall under the strong magnetic field. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(2): 396-404 (in Chinese) doi: 10.6052/0459-1879-21-513

    Meng Xu, Wang Zenghui, Cai Zhiyang, et al. Experimental study of gallium droplet impacting on solid wall under the strong magnetic field. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(2): 396-404 (in Chinese) doi: 10.6052/0459-1879-21-513
    [5]
    Shen MG, Li BQ, Bai Y. Numerical modeling of YSZ droplet impact/spreading with solidification microstructure formation in plasma spraying. International Journal of Heat and Mass Transfer, 2020, 150: 119267
    [6]
    Melayil KR, Mitra SK. Wetting, adhesion, and droplet impact on face masks. Langmuir, 2021, 37(8): 2810-2815 doi: 10.1021/acs.langmuir.0c03556
    [7]
    Rioboo R, Tropea C, Marengo M. Outcomes from a drop impact on solid surfaces. Atomization Spray, 2001, 11(2): 155-165
    [8]
    Wang H, Wu Q, Okagaki J, et al. Bouncing behavior of a water droplet on a super-hydrophobic surface near freezing temperatures. International Journal of Heat and Mass Transfer, 2021, 174: 121304
    [9]
    Kumar B, Chatterjee S, Agrawal A, et al. Evaluating a transparent coating on a face shield for repelling airborne respiratory droplets. Physics of Fluids, 2021, 33(11): 111705
    [10]
    康峰, 吴潇逸, 王亚雄等. 农药雾滴沉积特性研究进展与展望. 农业工程学报, 2021, 37(20): 1-14 (Kang Feng, Wu Xiaoyi, Wang Yaxiong, et al. Research progress and prospect of pesticide droplet deposition characteristics. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(20): 1-14 (in Chinese) doi: 10.11975/j.issn.1002-6819.2021.20.001

    Kang Feng, Wu Xiaoyi, Wang Yaxiong, et al. Research progress and prospect of pesticide droplet deposition characteristics. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(20): 1-14 (in Chinese) doi: 10.11975/j.issn.1002-6819.2021.20.001
    [11]
    An SM, Lee SY. Observation of the spreading and receding behavior of a shear-thinning liquid drop impacting on dry solid surfaces. Experimental Thermal and Fluid Science, 2012, 37: 37-45 doi: 10.1016/j.expthermflusci.2011.09.018
    [12]
    春江, 王瑾萱, 徐晨等. 液滴撞击超亲水表面的最大铺展直径预测模型. 物理学报, 2021, 70(10): 106801 (Chun Jiang, Wang Jinxuan, Xu Chen, et al. Theoretical model of maximum spreading diameter on superhydrophilic surfaces. Acta Physica Sinica, 2021, 70(10): 106801 (in Chinese)

    Chun Jiang, Wang Jinxuan, Xu Chen, et al. Theoretical model of maximum spreading diameter on superhydrophilic surfaces. Acta Physica Sinica, 2021, 70(10): 106801.1-106801.11 (in Chinese)
    [13]
    Šikalo Š, Wilhelm HD, Roisman IV, et al. Dynamic contact angle of spreading droplets: Experiments and simulations. Physics of Fluids, 2005, 17(6): 062103
    [14]
    Mao T, Kuhn DCS, Tran H. Spread and rebound of liquid droplets upon impact on flat surfaces. AIChE Journal, 1997, 43(9): 2169-2179 doi: 10.1002/aic.690430903
    [15]
    Lin SJ, Zhao BY, Zou S, et al. Impact of viscous droplets on different wettable surfaces: Impact phenomena, the maximum spreading factor, spreading time and post-impact oscillation. Journal of Colloid and Interface Science, 2018, 516: 86-97 doi: 10.1016/j.jcis.2017.12.086
    [16]
    Lee JB, Laan N, de Bruin KG, et al. Universal rescaling of drop impact on smooth and rough surfaces. Journal of Fluid Mechanics, 2016, 786: R4
    [17]
    Laan N, de Bruin KG, Bartolo D, et al. Maximum diameter of impacting liquid droplets. Physical Review Applied, 2014, 2(4): 044018
    [18]
    Roisman IV. Inertia dominated drop collisions. II. An analytical solution of the Navier–Stokes equations for a spreading viscous film. Physics of Fluids, 2009, 21(5): 052104
    [19]
    Du J, Wang X, Li Y, et al. Analytical consideration for the maximum spreading factor of liquid droplet impact on a smooth solid surface. Langmuir, 2021, 37(24): 7582-7590 doi: 10.1021/acs.langmuir.1c01076
    [20]
    Bergeron V, Bonn D, Martin JY, et al. Controlling droplet deposition with polymer additives. Nature, 2000, 405(6788): 772-775 doi: 10.1038/35015525
    [21]
    Smith MI, Bertola V. Effect of polymer additives on the wetting of impacting droplets. Physical Review Letters, 2010, 104(15): 154502
    [22]
    Zang D, Zhang W, Song J, et al. Rejuvenated bouncing of non-Newtonian droplet via nanoparticle enwrapping. Applied Physics Letters, 2014, 105(23): 231603
    [23]
    Huh HK, Jung S, Seo KW, et al. Role of polymer concentration and molecular weight on the rebounding behaviors of polymer solution droplet impacting on hydrophobic surfaces. Microfluid Nanofluid, 2015, 18(5): 1221-1232
    [24]
    Izbassarov D, Muradoglu M. Effects of viscoelasticity on drop impact and spreading on a solid surface. Physical Review Fluids, 2016, 1(2): 023302
    [25]
    韩丁丁, 刘浩然, 刘难生等. 黏弹性液滴撞击疏水壁面的动力学研究. 中国科学: 物理学 力学 天文学, 2018, 48(9): 250-257 (Han Dingding, Liu Haoran, Liu Nansheng, et al. Dynamics of viscoelastic drops impacting onto a hydrophobic solid substrate. Scientia Sinica (Physica,Mechanica &Astronomica), 2018, 48(9): 250-257 (in Chinese)

    Han Dingding, Liu Haoran, Liu Nansheng, et al. Dynamics of viscoelastic drops impacting onto a hydrophobic solid substrate. Scientia Sinica (Physica, Mechanica & Astronomica), 2018, 48(09): 250-257 (in Chinese)
    [26]
    沈学峰, 刘海龙, 王建成等. 高分子材料添加物对液滴撞击超疏水壁面后奇异射流行为的抑制机制研究. 工程热物理学报, 2022, 43(1): 123-127 (Shen Xuefeng, Liu Hailong, Wang Jiancheng, et al. Investigation on the suppression mechanism of singular jet behavior after droplets impact on superhydrophobic surfaces by adding polymer additives. Journal of Engineering Thermophysics, 2022, 43(1): 123-127 (in Chinese)

    Shen Xuefeng, Liu Hailong, Wang Jiancheng, et al. Investigation on the suppression mechanism of singular jet behavior after droplets impact on superhydrophobic surfaces by adding polymer additives. Journal of Engineering Thermophysics, 2022, 43(1): 123-127 (in Chinese)
    [27]
    Varagnolo S, Mistura G, Pierno M, et al. Sliding droplets of Xanthan solutions: A joint experimental and numerical study. The European Physical Journal E, 2015, 38(11): 1-8
    [28]
    Lindner A, Bonn D, Meunier J. Viscous fingering in a shear-thinning fluid. Physics of Fluids, 2000, 12(2): 256-261 doi: 10.1063/1.870303
    [29]
    German G, Bertola V. Impact of shear-thinning and yield-stress drops on solid substrates. Journal of Physics: Condensed Matter, 2009, 21(37): 375111
    [30]
    An SM, Lee SY. Maximum spreading of a shear-thinning liquid drop impacting on dry solid surfaces. Experimental Thermal and Fluid Science, 2012, 38: 140-148 doi: 10.1016/j.expthermflusci.2011.12.003
    [31]
    Dechelette A, Sojka PE, Wassgren CR. Non-Newtonian drops spreading on a flat surface. Journal of Fluids Engineering, 2010, 132(10): 101302
    [32]
    沈学峰, 曹宇, 王军锋等. 剪切变稀液滴撞击不同浸润性壁面的数值模拟研究. 物理学报, 2020, 69(6): 064702 (Shen Xuefeng, Cao Yu, Wang Junfeng, et al. Numerical simulation of shear-thinning droplet impact on surfaces with different wettability. Acta Physica Sinica, 2020, 69(6): 064702 (in Chinese)

    Shen Xuefeng, Cao Yu, Wang Junfeng, et al. Numerical simulation of shear-thinning droplet impact on surfaces with different wettability. Acta Physica Sinica, 2020, 69(6): 064702.1-064702.10 (in Chinese)
    [33]
    Carreau PJ. Rheological equations from molecular network theories. Transactions of the Society of Rheology, 1972, 16(1): 99-127 doi: 10.1122/1.549276
    [34]
    Wilamowski BM, Yu H. Improved computation for Levenberg–Marquardt training. IEEE Transactions on Neural Networks, 2010, 21(6): 930-937 doi: 10.1109/TNN.2010.2045657
    [35]
    Gao LC, McCarthy TJ. Contact angle hysteresis explained. Langmuir, 2006, 22(14): 6234-6237 doi: 10.1021/la060254j
    [36]
    Papageorgiou DT. On the breakup of viscous liquid threads. Physics of Fluids, 1995, 7(7): 1529-1544 doi: 10.1063/1.868540
    [37]
    Shen C, Zhang CC, Gao MH, et al. Investigation of effects of receding contact angle and energy conversion on numerical prediction of receding of the droplet impact onto hydrophilic and superhydrophilic surfaces. International Journal of Heat and Fluid Flow, 2018, 74: 89-109 doi: 10.1016/j.ijheatfluidflow.2018.09.015
    [38]
    Andrade R, Skurtys O, Osorio F. Development of a new method to predict the maximum spread factor for shear thinning drops. Journal of Food Engineering, 2015, 157: 70-76 doi: 10.1016/j.jfoodeng.2015.02.017
    [39]
    Chandra S, Avedisian CT. On the collision of a droplet with a solid surface. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1991, 432(1884): 13-41
    [40]
    Yonemoto Y, Kunugi T. Analytical consideration of liquid droplet impingement on solid surfaces. Scientific Reports, 2017, 7(1): 1-11 doi: 10.1038/s41598-016-0028-x
  • Related Articles

    [1]Hua Hongtao, Gu Huaguang. INHIBITORY STIMULATION WITH HIGH FREQUENCY INDUCES MIXED-MODE BURSTING: COOPERATION BETWEEN DIFFERENT DYNAMICS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2025, 57(5): 1-14. DOI: 10.6052/0459-1879-25-022
    [2]Hu Yinggang, Jiang Yanqun, Huang Xiaoqian. HIGH ORDER WEIGHT COMPACR NONLINEAR SCHEME FOR TIME-DEPENDENT HAMILTON-JACOBI EQUATIONS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(11): 3203-3214. DOI: 10.6052/0459-1879-22-233
    [3]Qian Youhua, Chen Yani. BURSTING OSCILLATIONS AND ENERGY HARVESTING EFFICIENCY ANALYSIS OF BISTABLE PIEZOELECTRIC ENERGY HARVESTER[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(11): 3157-3168. DOI: 10.6052/0459-1879-22-298
    [4]Ji Wenchao, Duan Lixia, Qi Huiru. BIFURCATION MECHANISM OF MIXED BURSTING IN NEURON MODEL UNDER THE ELECTROMAGNETIC FIELD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(6): 1733-1746. DOI: 10.6052/0459-1879-21-071
    [5]Qu Zifang, Zhang Zhengdi, Peng Miao, Bi Qinsheng. NON-SMOOTH BURSTING OSCILLATION MECHANISMS IN A FILIPPOV-TYPE SYSTEM WITH MULTIPLE PERIODIC EXCITATIONS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(5): 1145-1155. DOI: 10.6052/0459-1879-18-136
    [6]zhang xiaofang bi qinsheng. Bursting phenomena as well as the bifurcation mechanism in periodically excited hartley model[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(4): 765-773. DOI: 10.6052/0459-1879-2010-4-lxxb2009-614
    [7]Zhi Li. Hamiltonian formulation of axisymmetrical liquid jets[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(4): 449-454. DOI: 10.6052/0459-1879-2007-4-2005-508
    [8]THE CANONICAL HAMILTONIAN REPRESENTATIONS IN A CLASS OF PARTIAL DIFFERENTIAL EQUATION 1)[J]. Chinese Journal of Theoretical and Applied Mechanics, 1999, 31(3): 347-357. DOI: 10.6052/0459-1879-1999-3-1995-040
    [9]AN ADAPTIVE CONTROL STRATEGY FOR DIRECTING CHAOTIC MOTION TO PERIODIC MOTION[J]. Chinese Journal of Theoretical and Applied Mechanics, 1997, 29(5): 631-635. DOI: 10.6052/0459-1879-1997-5-1995-277
    [10]THE CANONICAL HAMILTONIAN REPRESENTATIONS IN SOLID MECHANICS[J]. Chinese Journal of Theoretical and Applied Mechanics, 1996, 28(1): 119-125. DOI: 10.6052/0459-1879-1996-1-1995-311
  • Cited by

    Periodical cited type(9)

    1. 刘畅. 电磁下耦合Chay神经元模型的放电及同步. 数学的实践与认识. 2024(08): 248-256 .
    2. 薛睿,张莉,安新磊,李雯. 电磁场作用下HR神经元模型的分岔分析及哈密顿能量控制. 四川大学学报(自然科学版). 2024(06): 159-167 .
    3. 安新磊,熊丽,乔帅. 电磁驱动下一类混合神经元模型的动力学响应与图像加密应用. 电子与信息学报. 2023(03): 929-940 .
    4. 任雁澜,乔帅,安新磊. 基于阈值控制策略的Filippov神经元模型的动力学及多稳态分析. 云南大学学报(自然科学版). 2023(04): 855-865 .
    5. 肖冉,安新磊,祁慧敏,乔帅. 电场作用下HR神经元的分岔分析及参数辨识. 浙江大学学报(理学版). 2022(06): 691-697+705 .
    6. 唐利红,贺宗梅,姚延立. 具有隐藏超级多稳定性的磁感应HR神经元及其电路实现. 计算物理. 2022(05): 589-597 .
    7. 安新磊,乔帅,张莉. 基于麦克斯韦电磁场理论的神经元动力学响应与隐藏放电控制. 物理学报. 2021(05): 46-65 .
    8. 张薇,安新磊,王红梅,乔帅. mHR神经元模型的分岔分析及其哈密顿能量控制. 云南大学学报(自然科学版). 2021(03): 486-494 .
    9. 祁慧敏,张莉,安新磊,乔帅,肖冉. 电磁感应下一类新皮层神经元的放电及同步. 山东大学学报(理学版). 2021(05): 1-11 .

    Other cited types(9)

Catalog

    Article Metrics

    Article views (892) PDF downloads (174) Cited by(18)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return