Citation: | Cai Zhenggang, Pan Junhua, Ni Mingjiu. An axisymmetric immersed boundary method based on 2D mesh. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(7): 1909-1920. DOI: 10.6052/0459-1879-22-110 |
[1] |
丛成华, 邓小刚, 毛枚良. 绕椭球的低速流动研究. 力学进展, 2021, 51(3): 467-619 (Cong Chenghua, Deng Xiaogang, Mao Meiliang. Advances in complex low speed flow around a prolate spheroid. Advances in Mechanics, 2021, 51(3): 467-619 (in Chinese) doi: 10.6052/1000-0992-20-036
Cong Chenghua, Deng Xiaogang, Mao Meiliang. Advances in complex low speed flow around a prolate spheroid. Advances in Mechanics, 2021, 51(3): 467-619(in Chinese) doi: 10.6052/1000-0992-20-036
|
[2] |
吴介之, 刘罗勤, 刘天舒. 定常升阻力普适理论的特色和升力的物理来源. 力学进展, 2021, 51(1): 106-129 (Wu Jiezhi, Liu Luoqin, Liu Tianshu. The universal steady lift and drag theory and the physical origin of lift. Advances in Mechanics, 2021, 51(1): 106-129 (in Chinese) doi: 10.6052/1000-0992-20-014
Wu Jiezhi, Liu Luoqin, Liu Tianshu. The universal steady lift and drag theory and the physical origin of lift. Advances in Mechanics, 2021, 51(1): 106-129(in Chinese) doi: 10.6052/1000-0992-20-014
|
[3] |
Peskin CS. Flow patterns around heart valves: a digital computer method for solving the equations of motion. [PhD Thesis]. New York: Yeshiva University, 1972
|
[4] |
Peskin CS. The fluid dynamics of heart valves: Experimental, theoretical, and computational methods. Annual Review of Fluid Mechanics, 1982, 14(1): 235-259 doi: 10.1146/annurev.fl.14.010182.001315
|
[5] |
Iaccarino G, Verzicco R. Immersed boundary technique for turbulent flow simulations. Applied Mechanics Reviews, 2003, 56(3): 331-347 doi: 10.1115/1.1563627
|
[6] |
Yang J, Stern F. A simple and efficient direct forcing immersed boundary framework for fluid –structure interactions. Journal of Computational Physics, 2012, 231(15): 5029-5061 doi: 10.1016/j.jcp.2012.04.012
|
[7] |
Grigoriadis D, Kassinos S, Votyakov E, et al. Immersed boundary method for the MHD flows of liquid metals. Journal of Computational Physics, 2009, 228(3): 903-920 doi: 10.1016/j.jcp.2008.10.017
|
[8] |
秦如冰, 柴翔, 程旭. 基于浸没边界法的流固耦合模拟分析. 核科学与工程, 2020, 40(5): 763-770 (Qin Rubing, Chai Xiang, Cheng Xu. Fluid-solid coupling simulation analysis based on immersed boundary method. Nuclear Science and Engineering, 2020, 40(5): 763-770 (in Chinese)
Qin Rubing, Chai Xiang, Cheng Xu. Fluid-solid Coupling Simulation Analysis Based on Immersed Boundary Method. Nuclear Science and Engineering. 2020, 40(5): 763-770(in Chinese)
|
[9] |
周睿, 程永光, 吴家阳. 用浸没边界-格子 Boltzmann 方法模拟双层刚性植被明渠水流特性. 水动力学研究与进展(A辑), 2019, 34(4): 503-511 (Zhou Rui, Cheng Yongguang, Wu Jiayang. Simulation of the open channel flow over double-layered rigid submerged vegetation by the immersed boundary-lattice Boltzmann method. Hydro-Science and Engineering (A)
Zhou Rui, Cheng Yongguang, Wu Jiayang. Simulation of the open channel flow over double-layered rigid submerged vegetation by the immersed boundary-lattice Boltzmann method. Hydro-Science and Engineering (A), 2019, 34(04): 503-511(in Chinese)
|
[10] |
周睿, 程永光, 吴家阳. 基于浸没边界法的水库变动水面模拟及验证. 水利水运工程学报, 2020, 1: 66-73 (Zhou Rui, Cheng Yongguang, Wu Jiayang. Simulation and verification of reservoir fluctuating water level based on immersed boundary method. Hydro-Science and Engineering, 2020, 1: 66-73 (in Chinese) doi: 10.12170/20180821001
Zhou Rui, Cheng Yongguang, Wu Jiayang. Simulation and verification of reservoir fluctuating water level based on immersed boundary method. Hydro-Science and Engineering, 2020,1: 66-73(in Chinese) doi: 10.12170/20180821001
|
[11] |
佟莹, 夏健, 陈龙等. 基于隐式扩散的直接力格式浸没边界格子Boltzmann 方法. 力学学报, 2022, 54(1): 94-105 (Tong Ying, Xia Jian, Chen Long, et al. An immersed boundary lattice Boltzmann method based on implicit diffuse directforcing scheme. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(1): 94-105 (in Chinese) doi: 10.6052/0459-1879-21-315
Tong Ying, Xia Jian, Chen Long, Xue Haotian. An Immersed boundary lattice Boltzmann method based on implicit diffuse directforcing scheme. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(1): 94-105(in Chinese) doi: 10.6052/0459-1879-21-315
|
[12] |
李桥忠, 陈木凤, 李游等. 浸没边界–简化热格子 Boltzmann 方法研究及其应用. 力学学报, 2019, 51(2): 392-404 (Li Qiaozhong, Chen Mufeng, Li You, et al. Immersed boundary-simplified thermal lattice Boltzmann method for fluid-structure interaction problem with heat transfer and its application. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 392-404 (in Chinese)
Li Qiaozhong, Chen Mufeng, Li You, Niu Xiaodong, Adnan Khan. Immersed boundary-simplified thermal lattice Boltzmann method for fluid-structure interaction problem with heat transfer and its application. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 392-404 (in Chinese))
|
[13] |
Mittal R, Iaccarino G. Immersed boundary methods. Annual Review of Fluid Mechanics, 2005, 37: 239-261 doi: 10.1146/annurev.fluid.37.061903.175743
|
[14] |
Seo JH, Mittal R. A sharp-interface immersed boundary method with improved mass conservation and reduced spurious pressure oscillations. Journal of Computational Physics, 2011, 230(19): 7347-7363 doi: 10.1016/j.jcp.2011.06.003
|
[15] |
Pan JH, Ni MJ, Zhang NM. A consistent and conservative immersed boundary method for MHD flows and moving boundary problems. Journal of Computational Physics, 2018, 373: 425-445 doi: 10.1016/j.jcp.2017.12.034
|
[16] |
Johnson TA, Patel VC. Flow past a sphere up to a Reynolds number of 300. Journal of Fluid Mechanics, 2000, 378: 19-70
|
[17] |
Jenny M, Dušek J, Bouchet G. Instabilities and transition of a sphere falling or ascending freely in a Newtonian fluid. Journal of Fluid Mechanics, 2004, 508: 201-239 doi: 10.1017/S0022112004009164
|
[18] |
Lai MC, Huang C, Huang YM. Simulating the axisymmetric interfacial flows with insoluble surfactant by immersed boundary method. International Journal of Numerical Analysis & Modeling, 2011, 8(1): 105-117
|
[19] |
Li Y, Yun A, Kim J. An immersed boundary method for simulating a single axisymmetric cell growth and division. Journal of Mathematical Biology, 2012, 65(4): 653-675 doi: 10.1007/s00285-011-0476-7
|
[20] |
Li X. An experimental and numerical study of normal particle collisions in a viscous liquid. [PhD Thesis]. California: California Institute of Technology, 2010
|
[21] |
Seo JH, Mittal R. A high-order immersed boundary method for acoustic wave scattering and low-Mach number flow-induced sound in complex geometries. Journal of Computational Physics, 2011, 230(4): 1000-1019 doi: 10.1016/j.jcp.2010.10.017
|
[22] |
Robertson I, Li L, Sherwin SJ, et al. A numerical study of rotational and transverse galloping rectangular bodies. Journal of Fluids and Structures, 2003, 17(5): 681-699 doi: 10.1016/S0889-9746(03)00008-2
|
[23] |
Ni MJ, Munipalli R, Huang P, et al. A current density conservative scheme for incompressible MHD flows at a low magnetic Reynolds number. Part II: On an arbitrary collocated mesh. Journal of Computational Physics, 2007, 227(1): 205-228
|
[24] |
Wu JS, Faeth GM. Sphere wakes in still surroundings at intermediate Reynolds numbers. AIAA Journal, 2012, 31(8): 1448-1455
|
[25] |
Tomboulides AG, Orszag SA. Numerical investigation of transitional and weak turbulent flow past a sphere. Journal of Fluid Mechanics, 2000, 416: 45-73 doi: 10.1017/S0022112000008880
|
[26] |
Pan JH, Zhang NM, Ni MJ. The wake structure and transition process of a flow past a sphere affected by a streamwise magnetic field. Journal of Fluid Mechanics, 2018, 842: 248-272 doi: 10.1017/jfm.2018.133
|
[27] |
Magnaudet J, Rivero M, Fabre J. Accelerated flows past a rigid sphere or a spherical bubble. Part 1. Steady straining flow. Journal of Fluid Mechanics, 1995, 284: 97-135
|
[28] |
Shenoy AR, Kleinstreuer C. Flow over a thin circular disk at low to moderate Reynolds numbers. Journal of Fluid Mechanics, 2008, 605: 253-262 doi: 10.1017/S0022112008001626
|
[29] |
Fernandes PC, Risso F, Ern P, et al. Oscillatory motion and wake instability of freely rising axisymmetric bodies. Journal of Fluid Mechanics, 2007, 573: 479-502 doi: 10.1017/S0022112006003685
|
[30] |
Brenner H. The slow motion of a sphere through a viscous fluid towards a plane surface. Chemical Engineering Science, 1961, 16(3-4): 242-251 doi: 10.1016/0009-2509(61)80035-3
|
[31] |
Gondret P, Lance M, Petit L. Bouncing motion of spherical particles in fluids. Physics of Fluids, 2002, 14(2): 643-652 doi: 10.1063/1.1427920
|
[32] |
Kempe T, Fröhlich J. Collision modelling for the interface-resolved simulation of spherical particles in viscous fluids. Journal of Fluid Mechanics, 2012, 709: 445-489 doi: 10.1017/jfm.2012.343
|
[33] |
Xia Y, Xiong H, Yu Z, et al. Effects of the collision model in interface-resolved simulations of particle-laden turbulent channel flows. Physics of Fluids, 2020, 32(10): 103303 doi: 10.1063/5.0020995
|
[34] |
Costa P, Boersma BJ, Westerweel J, et al. Collision model for fully resolved simulations of flows laden with finite-size particles. Physical Review E, 2015, 92(5): 053012 doi: 10.1103/PhysRevE.92.053012
|
[35] |
Brändle JC, Breugem WP, Gazanion B, et al. Numerical modelling of finite-size particle collisions in a viscous fluid. Physics of Fluids, 2013, 25(8): 083302 doi: 10.1063/1.4817382
|
[36] |
Jeffrey DJ. Low-Reynolds-number flow between converging spheres. Mathematika, 1982, 29(1): 58-66 doi: 10.1112/S002557930001216X
|
[1] | Li Yinshan, Ding Qian, Li Zirui, Guo Chunxia, Sun Yongtao, Liu Zhanli. ANALYTICAL SOLUTION OF STATICALLY INDETERMINATE BEAM-COLUMN[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(11): 3068-3079. DOI: 10.6052/0459-1879-22-337 |
[2] | Jin Bo, Hu Ming, Fang Qihong. RESEARCH ON STRESS FIELD OF SURROUNDING ROCK AND LINING STRUCTURE OF DEEP-BURIED SUBSEA TUNNEL CONSIDERING SEEPAGE EFFECT[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(5): 1322-1330. DOI: 10.6052/0459-1879-21-670 |
[3] | Yin Chonglin, Lü Aizhong. A NEW SOLUTION FOR FRICTIONAL SLIP CONTACT BETWEEN SURROUNDING ROCK AND LINING IN A HYDRAULIC CIRCULAR TUNNEL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 247-257. DOI: 10.6052/0459-1879-19-238 |
[4] | Li Yansong, Chen Shougen. ANALYTICAL SOLUTION OF FROST HEAVING FORCE IN NON-CIRCULAR COLD REGION TUNNELS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 196-207. DOI: 10.6052/0459-1879-19-226 |
[5] | Li Qi, Zhao Yiyuan, Hu Pengfei. ANALYTICAL SOLUTION FOR POROUS-FLUID FLOW CHARACTERISTICS WITH STRESS JUMP INTERFACIAL CONDITION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 415-426. DOI: 10.6052/0459-1879-17-357 |
[6] | Mingxiang Chen. n the fourth order tensor valued function of the stress in return map algorithm[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(2): 228-238. DOI: 10.6052/0459-1879-2010-2-2009-016 |
[7] | Zhu Chen, Guanting Liu, Lu Guan. Stress analysis of star cracks[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(3): 425-430. DOI: 10.6052/0459-1879-2009-3-2007-528 |
[8] | Junhong Guo, Guanting Liu. Stress analysis for an elliptical hole with two straight cracks[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(5): 699-703. DOI: 10.6052/0459-1879-2007-5-2007-017 |
[9] | ANALYTICAL SOLUTIONS ON SAINT VENANT PROBLEM OF LAYERED PLATES[J]. Chinese Journal of Theoretical and Applied Mechanics, 1997, 29(5): 617-626. DOI: 10.6052/0459-1879-1997-5-1995-275 |
[10] | ANALYTICAL SOLUTION OF POINT ELASTIC IMPACT BETWEEN STRVCTURES[J]. Chinese Journal of Theoretical and Applied Mechanics, 1996, 28(1): 99-103. DOI: 10.6052/0459-1879-1996-1-1995-307 |
1. |
郭远,傅卓佳,闵建,刘肖廷,赵海涛. 课程-迁移学习物理信息神经网络用于长时间非线性波传播模拟. 力学学报. 2024(03): 763-773 .
![]() | |
2. |
吴昊恺,陈耀然,周岱,陈文礼,曹勇. 基于CNN与GAN深度学习模型近壁面湍流场超分辨率重构的精细化研究. 力学学报. 2024(08): 2231-2242 .
![]() | |
3. |
董帅,史晓梦,王乐冰,李森,李顺治,吴正人. 法向磁场作用下槽道流内的精确相干态. 力学学报. 2023(08): 1618-1626 .
![]() | |
4. |
唐志共,朱林阳,向星皓,何磊,赵暾,王岳青,钱炜祺,袁先旭. 智能空气动力学若干研究进展及展望. 空气动力学学报. 2023(07): 1-35 .
![]() | |
5. |
黄章峰,张宇琦. 高超声速三维边界层转捩数值研究进展及预测软件. 空气动力学学报. 2023(11): 1-19 .
![]() |