EI、Scopus 收录
中文核心期刊
Song Wei, Ai Bangcheng. Research progress on multibody aerodynamics. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(6): 1461-1484. DOI: 10.6052/0459-1879-22-096
Citation: Song Wei, Ai Bangcheng. Research progress on multibody aerodynamics. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(6): 1461-1484. DOI: 10.6052/0459-1879-22-096

RESEARCH PROGRESS ON MULTIBODY AERODYNAMICS

  • Received Date: March 06, 2022
  • Accepted Date: April 06, 2022
  • Available Online: April 07, 2022
  • Multibody vehicle widely exists in the fields of aerospace and weapon system. There are three main types for the multibody vehicle system. Firstly, multiple vehicles are in close proximity flight that do not touch each other, such as formation flight and towed flight. Secendly, multibody vehicle are in contact with each other or combined to flight as a whole, such as aircraft-store carriage, the booster-flight of multistage vehicles, etc. Finally, multibody vehicle is in the relative motion after recovery or separation, such as aircraft-store separation, stage separation of multistage vehicles, etc. Multibody interference or interaction universally exists in the flowfield of multibody vehicle during steady or unsteady flight and dynamic separation, which makes the flow physics or characteristics of multibody vehicle different from isolated-body vehicle, especially in supersonic and hypersonic flow. There are multiple shock-wave reflection and diffraction, interference or interaction between shock-wave and vortex, shock-wave and boundary layer among multibody vehicle, which can significantly change the aerodynamic characteristics of multibody vehicle. The concept of “multibody aerodynamics” is advocated to summarize the field of multibody vehicle, and its basic connotation, application fields and flow characteristics of typical multibody configurations are explained, in order to point out the direction and ideas on aerodynamics and separation dynamics of multibody vehicle for the future research.
  • [1]
    Dogan A, Venkataramanan S, Blake W. Modeling of aerodynamic coupling between aircraft in close proximity. Journal of Aircraft, 2005, 42(4): 941-955 doi: 10.2514/1.7579
    [2]
    Zhang QR, Liu HHT. Aerodynamics modeling and analysis of close formation flight. Journal of Aircraft, 2017, 54(6): 2192-2204 doi: 10.2514/1.C034271
    [3]
    Kentfield JAC. Formation flight and much more. AIAA Journal, 2007, 45(8): 1795-1797 doi: 10.2514/1.31222
    [4]
    Etkin B. Stability of a towed body. Journal of Aircraft, 1998, 35(2): 197-205 doi: 10.2514/2.2308
    [5]
    Cochran JE, Innocenti M, No TS, et al. Dynamics and control of maneuverable towed flight vehicles. Journal of Guidance, Control, and Dynamics, 1992, 15(5): 1245-1252 doi: 10.2514/3.20975
    [6]
    Montalvo C, Costello M. Avoiding lockout instability for towed parafoil systems. Journal of Guidance, Control, and Dynamics, 2016, 39(5): 985-995 doi: 10.2514/1.G001545
    [7]
    Mizrahi I, Raveh DE. Wing elasticity effects on store separation. Journal of Aircraft, 2019, 56(3): 1231-1249 doi: 10.2514/1.C035204
    [8]
    Dissel AF, Kothari AP, Lewis MJ. Investigation of two-stage-to-orbit airbreathing launch-vehicle configurations. Journal of Spacecraft and Rockets, 2006, 43(3): 568-574 doi: 10.2514/1.17916
    [9]
    Wang Y, Wang H, Liu B, et al. A visual navigation framework for the aerial recovery of UAVs. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1-13
    [10]
    Wang G, Chen X, Xing Y, et al. Multi-body separation simulation with an improved general mesh deformation method. Aerospace Science and Technology, 2017, 71: 763-771 doi: 10.1016/j.ast.2017.10.027
    [11]
    Olejnik A, Dziubinski A, Kiszkowiak K. Separation safety analysis using CFD simulation and remeshing. Aerospace Science and Technology, 2020, 106: 106190 doi: 10.1016/j.ast.2020.106190
    [12]
    Kariv D, Raveh DE. Dynamic response of an elastic aircraft to ripple store ejection. Journal of Aircraft, 2020, 57(4): 635-651 doi: 10.2514/1.C035707
    [13]
    Loupy GJM, Barakos GN, Taylor NJ. Store release trajectory variability from weapon bays using scale-adaptive simulations. AIAA Journal, 2018, 56(2): 752-764 doi: 10.2514/1.J056485
    [14]
    Baum J, Hong L, Loehner R. Numerical simulation of aircraft canopy trajectory//28th Fluid Dynamics Conference, Snowmass Village, CO, USA, 1997
    [15]
    Mao XD, Lin GP, Yu J. Predicting ejection velocity of ejection seat via back propagation neural network. Journal of Aircraft, 2011, 48(2): 668-672 doi: 10.2514/1.C031196
    [16]
    Pamadi BN, Neirynck TA, Hotchko NJ, et al. Simulation and analyses of stage separation of two-stage reusable launch vehicles. Journal of Spacecraft and Rockets, 2007, 44(1): 66-80 doi: 10.2514/1.17896
    [17]
    Moelyadi MA, Breitsamter C, Laschka B. Stage-separation aerodynamics of two-stage space transport systems. Part 2: Unsteady simulation. Journal of Spacecraft and Rockets, 2008, 45(6): 1240-1250 doi: 10.2514/1.35059
    [18]
    Moelyadi MA, Breitsamter C, Laschka B. Stage-separation aerodynamics of two-stage space transport systems. Part 1: Steady-state simulations. Journal of Spacecraft and Rockets, 2008, 45(6): 1230-1239 doi: 10.2514/1.34828
    [19]
    Wang YP, Ozawa H, Koyama H, et al. Abort separation of launch escape system using aerodynamic interference. AIAA Journal, 2013, 51(1): 271-276
    [20]
    宋威, 鲁伟, 蒋增辉. 超声速飞行器头罩分离风洞投放模型试验. 实验流体力学, 2017, 31(6): 45-51 (Song Wei, Lu Wei, Jiang Zenghui. Wind tunnel drop model test of nose cap separation of supersonic vehicle. Journal of Experiments in Fluid Mechanics, 2017, 31(6): 45-51 (in Chinese) doi: 10.11729/syltlx20170026

    Song Wei, Lu Wei, Jiang Zenghui. Wind tunnel drop model test of nose cap separation of supersonic vehicle. Journal of Experiments in Fluid Mechanics, 2017, 31(6): 45-51 (in Chinese) doi: 10.11729/syltlx20170026
    [21]
    Dagan Y, Arad E. Analysis of shroud release applied for high-velocity missiles. Journal of Spacecraft and Rockets, 2014, 51(1): 57-66 doi: 10.2514/1.A32489
    [22]
    黄蓓, 王浩, 王帅等. 薄片状体沉降过程中的多体干扰流场特性. 弹道学报, 2012, 24(1): 41-46 (Huang Bei, Wang Hao, Wang Shuai, et al. Flow field characteristics of multi-plates interference in descent. Journal of Ballistics, 2012, 24(1): 41-46 (in Chinese) doi: 10.3969/j.issn.1004-499X.2012.01.009

    Huang Bei, Wang Hao, Wang Shuai, et al. Flow field characteristics of multi-plates interference in descent. Journal of Ballistics, 2012, 24(1): 41-46 (in Chinese) doi: 10.3969/j.issn.1004-499X.2012.01.009
    [23]
    王政伟, 王浩, 阮文俊等. 高速下集束薄片初始分离过程仿真研究. 空气动力学学报, 2015, 33(6): 828-834 (Wang Zhengwei, Wang Hao, Ruan Wenjun, et al. Simulation of plates group initial separation in high speed. Acta Aerodynamics Sinica, 2015, 33(6): 828-834 (in Chinese) doi: 10.7638/kqdlxxb-2014.0076

    Wang Zhengwei, Wang Hao, Ruan Wenjun, et al. Simulation of plates group initial separation in high speed. Acta Aerodynamics Sinica, 2015, 33(6): 828-834 (in Chinese)) doi: 10.7638/kqdlxxb-2014.0076
    [24]
    Tian SL, Fu JW, Chen JT. A numerical method for multi-body separation with collisions. Aerospace Science and Technology, 2021, 109: 106426 doi: 10.1016/j.ast.2020.106426
    [25]
    Perkins SC, Dillenius MFE. Supersonic submunition aerodynamics during dispenses. Journal of Spacecraft, 1991, 28(3): 276-283 doi: 10.2514/3.26241
    [26]
    Park SH, Kim J, Choi I, et al. Experimental study of separation behavior of two bodies in hypersonic flow. Acta Astronautica, 2021, 181: 414-426
    [27]
    Park SH, Park G. Separation process of multi-spheres in hypersonic flow. Advances in Space Research, 2020, 65: 392-406 doi: 10.1016/j.asr.2019.10.009
    [28]
    Laurence SJ, Parziale NJ, Deiterding R. Dynamical separation of spherical bodies in supersonic flow. Journal of Fluid Mechanics, 2012, 713: 159-182 doi: 10.1017/jfm.2012.453
    [29]
    Li T, Sui JX, Wu CJ. Numerical investigation of dynamical behavior of tethered rigid spheres in supersonic flow. Applied Mathematics and Mechanics (English Edition) , 2016, 37(6): 749-760 doi: 10.1007/s10483-016-2090-6
    [30]
    Li T, Sui JX, Sheng G, et al. Dynamical separation of rigid bodies in supersonic flow. Science China (Technological Sciences) , 2015, 58(12): 2110-2121 doi: 10.1007/s11431-015-5966-1
    [31]
    Fedorov A, Malmuth N, Soudakov V. Supersonic scattering of a wing-induced incident shock by a slender body of revolution. Journal Fluid Mechanics, 2007, 585: 305-322 doi: 10.1017/S0022112007006714
    [32]
    Chaplin R. Aerodynamic interference between high-speed slender bodies. [PhD Thesis]. England: Cranfield University, 2009
    [33]
    Chaplin RA, Macmanus DG, Birch TJ. Aerodynamic interference between high-speed slender bodies. Shock Waves, 2010, 20: 89-101 doi: 10.1007/s00193-009-0241-7
    [34]
    Chaplin R, Macmanus D, Leopold F, et al. Computational and experimental investigation into aerodynamic interference between slender bodies in supersonic flow. Computers & Fluids, 2011, 50: 155-174
    [35]
    Chaplin R, Macmanus D, Leopold F, et al. Experimental investigation into the interference aerodynamics of two slender bodies in close proximity. Experiments in Fluids, 2011, 50: 491-507
    [36]
    Chaplin R, Macmanus D, Leopold F, et al. Aerodynamic interference on finned slender body. AIAA Journal, 2016, 54(7): 2017-2033 doi: 10.2514/1.J054704
    [37]
    Orlik-Ruckemann KJ, Iyengar S. Example of dynamic interference effects between two oscillating vehicles. Journal of Spacecraft and Rockets Volume, 1973, 10(9): 617-622 doi: 10.2514/3.61937
    [38]
    Fedorov AV, Soudakov VG, Malmuth ND. Theoretical modeling of two-body interaction in supersonic flow. AIAA Journal, 2010, 48(2): 258-266 doi: 10.2514/1.40592
    [39]
    Fedorov AV, Soudakov VG, Malmuth ND. Theoretical modeling of two-body interaction in supersonic flow//5th AIAA Theoretical Fluid Mechanics Conference, Seattle, Washington, 2008
    [40]
    Zhai S, Li CZ, Wang CC, et al. Vertically optimal close formation flight control based on wingtip vortex structure. Journal of Aircraft, 2020, 57(5): 964-973 doi: 10.2514/1.C035766
    [41]
    Korkischko I, Konrath R. Formation flight of low-aspect-ratio wings at low Reynolds number. Journal of Aircraft, 2017, 54(3): 1025-1034 doi: 10.2514/1.C033941
    [42]
    Ning SA, Kroo I. Extended formation flight at transonic speeds. Journal of Aircraft, 2014, 51(5): 1501-1510 doi: 10.2514/1.C032385
    [43]
    Shin HS, Antoniadis AF, Tsourdos A. Parametric study on formation flying effectiveness for a blended-wing UAV. Journal of Intelligent & Robotic Systems, 2019, 93: 179-191
    [44]
    樊琼剑, 杨忠, 方挺等. 多无人机协同编队飞行控制的研究现状. 航空学报, 2009, 30(4): 683-691 (Fan Qiongjian, Yang Zhong, Fang Ting, et al. Research status of coordinated formation flight control for Multi-UAVs. Acta Aeronautica et Astronautica Sinica, 2009, 30(4): 683-691 (in Chinese) doi: 10.3321/j.issn:1000-6893.2009.04.018

    Fan Qiongjian, Yang Zhong, Fang Ting, et al. Research status of coordinated formation flight control for Multi-UAVs. Acta Aeronautica et Astronautica Sinica, 2009, 30(4): 683-691(in Chinese) doi: 10.3321/j.issn:1000-6893.2009.04.018
    [45]
    刘钒. 飞行器拖曳系统气动特性数值模拟研究. [硕士论文]. 绵阳: 中国空气动力研究与发展中心, 2014

    Liu Fan. Numerical simulation research on the aerodynamic characteristics of aerial towed cable system. [PhD Thesis]. Mianyang: China Aerodynamics Research and Development Center, 2014 (in Chinese)
    [46]
    Thomas PR, Bhandari U, Bullock S, et al. Advances in air to air refueling. Progress in Aerospace Sciences, 2014, 71: 14-35 doi: 10.1016/j.paerosci.2014.07.001
    [47]
    Katz J. Aerodynamic aspects of unmanned aerial vehicle aerial refueling. Journal of Aircraft, 2017, 54(6): 2311-2316 doi: 10.2514/1.C034373
    [48]
    Bloy AW, West MG, Lea KA, et al. Lateral aerodynamic interference between tanker and receiver in air-to-air refueling. Journal of Aircraft, 1993, 30(5): 705-710 doi: 10.2514/3.46401
    [49]
    Bloy AW, Lea KA. Directional stability of a large receiver aircraft in air-to-air refueling. Journal of Aircraft, 1994, 32(2): 453-455
    [50]
    Bloy AW, Khan MM. Modeling of the receiver aircraft in air-to-air refueling. Journal of Aircraft, 2001, 38(2): 393-396 doi: 10.2514/2.2775
    [51]
    Klijn MS, Klijn NS, Hudson GC, et al. Selection of a carrier aircraft and a launch method for air launching space vehicles//AIAA SPACE 2008 Conference & Exposition, San Diego, California, 2008
    [52]
    Matteis GD. Longitudinal dynamics of a towed sailplane. Journal of Guidance, Control, and Dynamics, 1993, 16(5): 822-829 doi: 10.2514/3.21088
    [53]
    杜一江. 航空拖曳诱饵系统机动过程缆绳张力仿真. 航空学报, 2021, 42(9): 224495 (Du Yijiang. Simulation on cable tension of aerial towed decoy system during maneuvers. Acta Aeronautica et Astronautica Sinica, 2021, 42(9): 224495 (in Chinese)

    Du Yijiang. Simulation on cable tension of aerial towed decoy system during maneuvers. Acta Aeronautica et Astronautica Sinica, 2021, 42(9): 224495 (in Chinese)
    [54]
    Murman SM, Aftosmis MJ, Berger MJ. Simulations of store separation from an F/A-18 with a cartesian method. Journal of Aircraft, 2004, 41(4): 870-878 doi: 10.2514/1.473
    [55]
    Ma X, Liu W, Chen L, et al. Simulative technology for auxiliary fuel tank separation in a wind tunnel. Chinese Journal of Aeronautics, 2016, 29(3): 608-616 doi: 10.1016/j.cja.2016.04.009
    [56]
    Charltony EF, Davis MB. Computational optimization of the F-35 external fuel tank for store separation//46th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 2008
    [57]
    Martin JA. History of propulsion for single-stage-to-orbit and multiple-stage vehicles. Journal of Propulsion and Power, 1995, 11(1): 98-104 doi: 10.2514/3.23845
    [58]
    Forbes-Spyratos SO, Kearney MP, Smart MK, et al. Trajectory design of a Rocket-Scramjet-Rocket multistage launch system. Journal of Spacecraft and Rockets, 2019, 56(1): 53-67 doi: 10.2514/1.A34107
    [59]
    Gruhn P, Gülhan A. Aerodynamic measurements of an air-breathing hypersonic vehicle at Mach 3.5 to 8. AIAA Journal, 2018, 56(11): 4282-4296
    [60]
    Grallert H. Synthesis of a FESTIP airbreathing TSTO space transportation system. Journal of Propulsion and Power, 2001, 17(6): 1191-1198
    [61]
    白治宁, 蔡卫军, 周景军等. 助飞鱼雷雷箭分离多体气动干扰特性研究. 兵工学报, 2017, 38(11): 2176-2183 (Bai Zhining, Cai Weijun, Zhou Jingjun, et al. Research on multi-body aerodynamic interference during torpedo-rocket separation. Acta Armamentarii, 2017, 38(11): 2176-2183 (in Chinese) doi: 10.3969/j.issn.1000-1093.2017.11.013

    Bai Zhining, Cai Weijun, Zhou Jingjun, et al. Research on multi-body aerodynamic interference during torpedo-rocket separation. Acta Armamentarii, 2017, 38(11): 2176-2183 (in Chinese) doi: 10.3969/j.issn.1000-1093.2017.11.013
    [62]
    Hohn OM, Gulhan A. Impact of retrorocket plumes on upper-stage aerothermodynamics during stage separation. Journal of Spacecraft and Rockets, 2017, 54(3): 640-651 doi: 10.2514/1.A33728
    [63]
    Tartabini PV, Roithmayr CM, Toniolo MD, et al. Modeling multibody stage separation dynamics using constraint foce equation methodology. Journal of Spacecraft and Rockets, 2011, 48(4): 573-583 doi: 10.2514/1.51943
    [64]
    Holland SD, Woods WC, Engelund WC. Hyper-X research vehicle experimental aerodynamics test program overview. Journal of Spacecraft and Rockets, 2001, 38(6): 828-835 doi: 10.2514/2.3772
    [65]
    Erickson GE. Wind tunnel investigation of the supersonic stage separation aerodynamics of a generic 0.0175-scale bimese two-stage-to-orbit reusable launch vehicle configuration. NASA/TM-2020-220582, Langley Research Center, Hampton, Virginia, 2020
    [66]
    张辉, 陈宏波, 杨勇等. 飞行器多体分离气动干扰特性数值模拟//第十五届全国计算流体力学会议论文集, 山东烟台, 2012
    [67]
    张翔, 闫超, 马林静. 多体分离运动稳定性研究//第十六届全国计算流体力学会议论文集, 福建厦门, 2014
    [68]
    王巍, 刘君, 白晓征等. 非结构动网格技术及其在超声速飞行器头罩分离模拟中的应用. 空气动力学学报, 2008, 26(1): 131-135 (Wang Wei, Liu Jun, Bai Xiaozheng, et al. DUM research and apply to solve the fairing separating form hypersonic vehicle. Acta Aerodynamica Sinica, 2008, 26(1): 131-135 (in Chinese) doi: 10.3969/j.issn.0258-1825.2008.01.025

    Wang Wei, Liu Jun, Bai Xiaozheng, et al. DUM research and apply to solve the fairing separating form hypersonic vehicle. Acta Aerodynamica Sinica, 2008, 26(1): 131-135 (in Chinese) doi: 10.3969/j.issn.0258-1825.2008.01.025
    [69]
    林敬周, 王雄, 钟俊等. 高马赫数多体分离试验技术研究与应用. 推进技术, 2020, 41(4): 925-933 (Lin Jingzhou, Wang Xiong, Zhong Jun, et al. Investigation and application of high mach number multi-body separation test technique. Journal of Propulsion Technology, 2020, 41(4): 925-933 (in Chinese)

    Lin Jingzhou, Wang Xiong, Zhong Jun, et al. Investigation and application of high mach number multi-body separation test technique. Journal of Propulsion Technology, 2020, 41(4): 925-933 (in Chinese))
    [70]
    雷娟棉, 牛健平, 王锁柱等. 初始分离条件对航弹与载机分离安全性影响的数值模拟研究. 兵工学报, 2016, 37(2): 357-366 (Lei Juanmian, Niu Jianping, Wang Suozhu, et al. Numerical simulation about the effect of initial separation condition on safety of aerial bomb separated from an aircraft. Acta Armamentarii, 2016, 37(2): 357-366 (in Chinese) doi: 10.3969/j.issn.1000-1093.2016.02.023

    Lei Juanmian, Niu Jianping, Wang Suozhu, et al. Numerical simulation about the effect of initial separation condition on safety of aerial bomb separated from an aircraft. Acta Armamentarii, 2016, 37(2): 357-366 (in Chinese) doi: 10.3969/j.issn.1000-1093.2016.02.023
    [71]
    田书玲, 伍贻兆, 夏健. 用动态非结构重叠网格法模拟三维多体相对运动绕流. 航空学报, 2007, 28(1): 46-51 (Tian Shuling, Wu Yizhao, Xia Jian. Simulation of flows past multibody in relative motion with dynamic unstructured overset grid method. Acta Aeronautica Et Astronautica Sinica, 2007, 28(1): 46-51 (in Chinese) doi: 10.3321/j.issn:1000-6893.2007.01.008

    Tian Shuling, Wu Yizhao, Xia Jian. Simulation of flows past multibody in relative motion with dynamic unstructured overset grid method. Acta Aeronautica Et Astronautica Sinica, 2007, 28(1): 46-51 (in Chinese) doi: 10.3321/j.issn:1000-6893.2007.01.008
    [72]
    伍贻兆, 田书玲, 夏健. 基于非结构动网格的非定常流数值模拟方法. 航空学报, 2011, 32(1): 15-26 (Wu Yizhao, Tian Shuling, Xia Jian. Unstructured grid methods for unsteady flow simulation. Acta Aeronautica Et Astronautica Sinica, 2011, 32(1): 15-26 (in Chinese)

    Wu Yizhao, Tian Shuling, Xia Jian. Unstructured grid methods for unsteady flow simulation. Acta Aeronautica Et Astronautica Sinica, 2011, 32(1): 15-26 (in Chinese)
    [73]
    Lu Y, Qian ZS, Lu WB, et al. Numerical investigation on the safe stage-separation mode for a TSTO vehicle. Aerospace Science and Technology, 2020, 107: 106349 doi: 10.1016/j.ast.2020.106349
    [74]
    李盾, 何跃龙, 纪楚群. 多体分离数值模拟研究与应用//北京力学会第19届学术年会论文集. 北京, 2013
    [75]
    蒋增辉, 宋威, 贾区耀等. 多体分离风洞自由飞试验. 空气动力学学报, 2016, 34(5): 581-586 (Jiang Zenghui, Song Wei, Jia Quyao, et al. Wind tunnel free-flight test for multi-body separation. Acta Aerodynamica Sinica, 2016, 34(5): 581-586 (in Chinese) doi: 10.7638/kqdlxxb-2014.0137

    Jiang Zenghui, Song Wei, Jia Quyao, et al. Wind tunnel free-flight test for multi-body separation. Acta Aerodynamica Sinica, 2016, 34(5): 581-586(in Chinese) doi: 10.7638/kqdlxxb-2014.0137
    [76]
    宋威, 艾邦成. 多体飞行器分离动力学问题研究进展[J/OL]. 航空学报. (Song Wei, Ai Bangcheng. Review of multibody separation dynamics[J/OL]. Acta Aeronautica et Astronautica Sinica.
    [77]
    Klijn MS, Klijn NS, Morgan B, et al. Flight testing of a new earth-to-orbit air launch method. Journal of Aircraft, 2006, 43(3): 577-583 doi: 10.2514/1.18559
    [78]
    Cenko A. Experience in the use of computational aerodynamics to predict store release characteristics. Progress in Aerospace Sciences, 2001, 37: 477-495 doi: 10.1016/S0376-0421(01)00013-6
    [79]
    Malmuth ND. Theoretical aerodynamics in today’s real world opportunities and challenges. AIAA Journal, 2006, 44(7): 1377-1392 doi: 10.2514/1.18234
    [80]
    Rajagopal K, Malmuth ND, Lick WJ. Calculation of transonic flows over bodies of varying complexity using slender body theory. AIAA Journal, 1988, 27(9): 1220-1229
    [81]
    Broek GJ. The use of a panel method in the prediction of external store separation. Journal of Aircraft, 1984, 21(5): 309-315 doi: 10.2514/3.44965
    [82]
    Waskiewicz J, Dejongh J, Cenko A. Application of panel methods to external stores at supersonic speeds. Journal of Aircraft, 1983, 20(2): 153-158 doi: 10.2514/3.44844
    [83]
    Maraniello S, Palacios S. Parametric reduced-order modeling of the unsteady vortex-lattice method. AIAA Journal, 2020, 58(5): 2206-2220 doi: 10.2514/1.J058894
    [84]
    Cenko A, Meyer R, Tessitore F. Further development of the influence function method for store aerodynamic analysis. Journal of Aircraft, 1986, 23(1): 656-661
    [85]
    Henderson C, Cenko A, Tseng W, et al. Influence function method applications to tow target trajectory predictions. Journal of Aircraft, 1988, 25(2): 1129-1135
    [86]
    Spahr HR. Theoretical store separation analyses of a prototype store. Journal of Aircraft, 1975, 12(10): 807-811 doi: 10.2514/3.59875
    [87]
    秦永明, 田晓虎, 董金刚等. 串联布局飞行器级间冷分离气动特性研究. 实验流体力学, 2014, 28(1): 38-43 (Qin Yongming, Tain Xiaohu, Dong Jinggang, et al. Investigation on aerodynamics characteristics at stage separation of tandem layout vehicle. Journal of Experiment in Fluid Mechanics, 2014, 28(1): 38-43 (in Chinese) doi: 10.11729/syltlx20130016

    Qin Yongming, Tain Xiaohu, Dong Jinggang, et al. Investigation on aerodynamics characteristics at stage separation of tandem layout vehicle. Journal of Experiment in Fluid Mechanics, 2014, 28(1): 38-43 (in Chinese) doi: 10.11729/syltlx20130016
    [88]
    宋威, 蒋增辉. 串联飞行器级间分离风洞自由飞试验. 空气动力学学报, 2017, 35(5): 687-692 (Song Wei, Jiang Zenghui. Wind tunnel free-flight test for stage separation of tandem layout vehicle. Acta Aerodynamica Sinica, 2017, 35(5): 687-692 (in Chinese)

    Song Wei, Jiang Zenghui. Wind tunnel free-flight test for stage separation of tandem layout vehicle. Acta Aerodynamica Sinica, 2017, 35(5): 687-692(in Chinese)
    [89]
    Roshanian J, Talebi M. Monte Carlo simulation of stage separation dynamics of a multistage launch vehicle. Applied Mathematics and Mechanics, 2008, 29(11): 1411-1426 doi: 10.1007/s10483-008-1103-z
    [90]
    Engelund WC, Holland SD, Cockrell CE, et al. Aerodynamic database development for the Hyper-X airframe integrated scramjet propulsion experiments. Journal of Spacecraft and Rockets, 2001, 38(6): 803-810 doi: 10.2514/2.3768
    [91]
    Woods WC, Holland SD, Difulvio M. Hyper-X stage separation wind-tunnel test program. Journal of Spacecraft and rockets, 2001, 38(6): 811-819 doi: 10.2514/2.3770
    [92]
    Buning PG, Wong T, Dilley AD, et al. Computational fluid dynamics prediction of Hyper-X stage separation aerodynamics. Journal of Spacecraft and Rockets, 2001, 38(6): 820-827 doi: 10.2514/2.3771
    [93]
    Cockrell CE, Engelund WC, Bittner RD, et al. Integrated aeropropulsive computational fluid dynamics methodology for the Hyper-X flight experiment. Journal of Spacecraft and Rockets, 2001, 38(6): 836-843 doi: 10.2514/2.3773
    [94]
    Eramya A, Cline J, Braunstein M, et al. Transient modeling of high altitude rocket-stage separation. Journal of Spacecraft and Rockets, 2008, 45(4): 698-705 doi: 10.2514/1.34784
    [95]
    Lungu CE, Ramasamy SG, Scarborough DE, et al. Experimental studies of stage separation a Mach 2.5 free stream//47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition, Orlando, Florida, 2009
    [96]
    Raghunathan S, Kim HD, Benard E, et al. Plume interference effects on missile bodies. Journal of Spacecraft and Rockets, 2003, 40(1): 136-138 doi: 10.2514/2.3928
    [97]
    Li Y, Eggers T, Reimann B. Coupled simulation of CFD-flight-mechanics with a two-species-gas-model for the hot rocket staging. Acta Astronautica, 2016, 128: 44-61 doi: 10.1016/j.actaastro.2016.07.009
    [98]
    Marconi F. Shock reflection transition in three-dimensional steady flow about interfering bodies. AIAA Journal, 1983, 21(5): 707-713 doi: 10.2514/3.8137
    [99]
    Brosh A, Kussoy MI, Hung CM. An experimental and numerical investigation of the impingement of an oblique shock wave on a body of revolution//AlAA 16th Fluid and Plasma Dynamics Conference, Danvers, Massachusetts, 1983
    [100]
    Brosh A, Kussoy MI. An experimental investigation of the impingement of a planar shock wave on an axisymmetric body at mach 3. NASA TM 84410, Washington DC, USA, 1983
    [101]
    Brosh A, Kussoy M, Hung C. Experimental and numerical investigation of a shock wave impingement on a cylinder. AIAA Journal, 1985, 23(6): 840-846 doi: 10.2514/3.8996
    [102]
    Hung CM. Impingement of an oblique shock wave on a cylinder. Journal of Spacecraft, 1983, 20(3): 201-206 doi: 10.2514/3.25580
    [103]
    Cenko A, Waskiewicz J. Recent improvements in prediction techniques for supersonic weapon separation. Journal of Aircraft, 1983, 20(8): 659-666 doi: 10.2514/3.44926
    [104]
    Newman G, Fulcher K, Ray R, et al. On the aerodynamics/dynamics of store separation from a hypersonic aircraft //AIAA 10th Applied Aerodynamics Conference, Palo Alto, CA, 1992
    [105]
    Mosbarger NA, King PI. Time-dependent supersonic separation of tangent bodies. Journal of Aircraft, 1996, 33(5): 938-949 doi: 10.2514/3.47039
    [106]
    Cvrlje T. Unsteady separation of a two-stage hypersonic vehicle//30th AIAA Fluid Dynamics Conference, Norfolk, VA, 1999
    [107]
    Cvrlje T, Breitsamter C, Laschka B. Numerical simulation of the lateral aerodynamics of an orbital stage at stage separation flow conditions. Aerospace Science and Technology, 2000, 4: 157-171 doi: 10.1016/S1270-9638(00)00132-2
    [108]
    Cvrlje T, Breitsamter C, Weishäupl C, et al. Euler and Navier-Stokes simulations of two-stage hypersonic vehicle longitudinal motions. Journal of Spacecraft and Rockets, 2000, 37(2): 242-251 doi: 10.2514/2.3552
    [109]
    Stephen E, Farnsworth AN, Porter CO, et al. Impinging shock-wave boundary-layer interactions on a three-dimensional body//43rd Fluid Dynamics Conference, San Diego, CA, 2013
    [110]
    Robertson G, Kumar R, Eymann T, et al. Experimental and numerical study of shock-wave boundary layer interactions on an axisymmetric body//45th AIAA Fluid Dynamics Conference, Dallas, 2015
    [111]
    Mason F, Rajan KR, Eymann TA. Study of impinging planar shock wave boundary layer interactions on an axisymmetric body//AIAA Scitech 2019 Forum, San Diego, California, 2019
    [112]
    Mason F, Natarajan K, Kumar R, et al. Shock boundary layer interaction induced surface pressure field on an axisymmetric body//AIAA Scitech 2020 Forum, Orlando, FL, 2020
    [113]
    Kiriakos RM, Khamseh AP, Demauro EP. Towards stereoscopic PIV of impinging planar shock/turbulent boundary layer interactions on an axisymmetric body//AIAA Scitech 2021 Forum, Virtual Event, 2021
    [114]
    Derunov E, Zheltovodov A, Maksimov A. Development of threedimensional turbulent separation in the neighborhood of incident crossing shock waves. Thermophysics and Aeromechanics, 2008, 15(1): 29-54 doi: 10.1134/S0869864308010034
    [115]
    Gai S, Teh S. Interaction between a conical shock wave and a plane turbulent boundary layer. AIAA Journal, 2000, 38(5): 804-811 doi: 10.2514/2.1060
    [116]
    Jia JH, Fu DB, He ZP. Aerodynamic interactions of a reusable launch vehicle model with different nose configurations. Acta Astronautica, 2020, 177: 58-65 doi: 10.1016/j.actaastro.2020.07.022
    [117]
    Jia JH, Fu DB, He ZP, et al. Hypersonic aerodynamic interference investigation for a two-stage-to-orbit model. Acta Astronautica, 2020, 168: 138-145 doi: 10.1016/j.actaastro.2019.11.038
    [118]
    Lawson SJ, Barakos GN. Review of numerical simulations for high-speed, turbulent cavity flows. Progress in Aerospace Sciences, 2011, 47(1): 186-216
    [119]
    Cattafesta LN, Song Q, Williams DR, et al. Active control of flow-induced cavity oscillations. Progress in Aerospace Sciences, 2008, 44: 479-502 doi: 10.1016/j.paerosci.2008.07.002
    [120]
    Chin D, Turpin A, Granlund K. Time-dependent aerodynamic loads on single and tandem stores in a supersonic cavity. Journal of Aircraft, 2020, 57(4): 702-714 doi: 10.2514/1.C035749
    [121]
    Chin D, Granlund K. Stochastic store trajectory of ice models from a cavity into supersonic flow. Journal of Aircraft, 2019, 56(4): 1313-1319 doi: 10.2514/1.C035104
    [122]
    Robertson G, Rajan Kumar R. Effects of a generic store on cavity resonance at supersonic speeds. AIAA Journal, 2020, 58(4): 1-12
    [123]
    Cenko A, Chen D, Turzansk R. Influence function method applications to cavity flowfield predictions. Journal of Aircraft, 1989, 26(12): 760-765
    [124]
    Flora TJ, Reeder MF. Dynamic store release of ice models from a cavity into Mach 2.9 flow. Journal of Aircraft, 2014, 51(6): 1927-1941 doi: 10.2514/1.C032459
    [125]
    Shalaev V, Fedorov AV, Malmuth ND. Dynamics of slender bodies separating from rectangular cavities. AIAA Journal, 2002, 40(3): 517-525 doi: 10.2514/2.1676
    [126]
    Debashis S, Anuradha A, Farrukh A. Active store trajectory control in supersonic cavities using microjets and low-order modeling. AIAA Journal, 2007, 45(3): 516-531 doi: 10.2514/1.18007
    [127]
    Merrick JD, Reeder MF. Sphere release from a rectangular cavity at mach 2.22 freestream conditions. Journal of Aircraft, 2016, 53(3): 822-829 doi: 10.2514/1.C033636
    [128]
    Loupy GJM, Barakos GN, Taylor NJ. Store release trajectory variability from weapon bays using scale-adaptive simulations. AIAA Journal, 2017, 56(2): 752-764
    [129]
    艾邦成, 宋威, 董垒等. 内埋武器机弹分离相容性研究进展综述. 航空学报, 2020, 41(10): 023809 (Song Wei, Ai Bangcheng. Review on aircraft-store separation compatibility for the internal weapons. Acta Aeronautica et Astronautica Sinica, 2020, 41(10): 023809 (in Chinese)

    Song Wei, Ai Bangcheng. Review on aircraft-store separation compatibility for the internal weapons. Acta Aeronautica et Astronautica Sinica, 2020, 41(10): 023809 (in Chinese)
    [130]
    董金刚, 张晨凯, 谢峰等. 内埋武器超声速分离机弹干扰特性试验研究. 实验流体力学, 2021, 35(3): 46-51 (Dong Jingang, Zhang Chenkai, Xie Feng, et al. Experimental investigation on the separation interference characteristics of supsonic internal weapon releasing from the aircraft. Journal of Experiments in Fluid Mechanics, 2021, 35(3): 46-51 (in Chinese)

    Dong Jingang, Zhang Chenkai, Xie Feng, et al. Experimental investigation on the separation interference characteristics of supsonic internal weapon releasing from the aircraft. Journal of Experiments in Fluid Mechanics, 2021, 35(3): 46-51 (in Chinese)
    [131]
    董金刚, 谢峰, 张晨凯等. 风洞模型投放试验轻模型法重力效应影响. 航空学报, 2020, 41(6): 523434 (Dong Jingang, Xie Feng, Zhang Chenkai, et al. Gravity effects of light model method in wind tunnel model drop test. Acta Aeronautical et Astronautica Sinica, 2020, 41(6): 523434 (in Chinese)

    Dong Jingang, Xie Feng, Zhang Chenkai, et al. Gravity effects of light model method in wind tunnel model drop test. Acta Aeronautical et Astronautica Sinica, 2020, 41(6): 523434 (in Chinese)
    [132]
    宋威, 鲁伟, 蒋增辉等. 内埋武器高速风洞弹射投放模型试验关键技术研究. 力学学报, 2018, 50(6): 1346-1355 (Song Wei, Lu Wei, Jiang Zenghhui, et al. The crucial technique investigation of wind-tunnel drop-model testing for the supersonic internal weapons. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(6): 1346-1355 (in Chinese) doi: 10.6052/0459-1879-18-180

    Song Wei, Lu Wei, Jiang Zenghhui, et al. The crucial technique investigation of wind-tunnel drop-model testing for the supersonic internal weapons. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50 (6): 1346-1355 (in Chinese) doi: 10.6052/0459-1879-18-180
    [133]
    宋威, 艾邦成, 蒋增辉等. 内埋武器投放分离相容性的风洞投放试验预测与评估. 航空学报, 2020, 41(6): 523415 (Song Wei, Ai Bangcheng, Jiang Zenghui, et al. Prediction and assessment of drop separation compatibility of internal weapons by wind tunnel drop-test. Acta Aeronautica et Astronautica Sinica, 2020, 41(6): 523415 (in Chinese)

    Song Wei, Ai Bangcheng, Jiang Zenghui, et al. Prediction and assessment of drop separation compatibility of internal weapons by wind tunnel drop-test. Acta Aeronautica et Astronautica Sinica, 2020, 41(6): 523415 (in Chinese)
    [134]
    宋威, 艾邦成. 内埋武器机弹分离相容性及流动控制试验研究. 空气动力学学报, 2021, 40: 1-9 (Song Wei, Ai Bangcheng. Expermental investigation on aircraft-store compatibility and flow control for internal weapons separation. Aerodynamica Sinica, 2021, 40: 1-9 (in Chinese)

    Song Wei, Ai Bangcheng. Expermental investigation on aircraft-store compatibility and flow control for internal weapons separation. Aerodynamica Sinica, 2021, 40(X): 1-9 (in Chinese))
    [135]
    Weihs D, Ringel M, Victor M. Aerodynamic interactions between adjacent slender bodies. AIAA Journal, 2006, 44(3): 481-484 doi: 10.2514/1.18902
    [136]
    Mowatt S, Skews B. Three dimensional shock wave boundary layer interactions. Shock Waves, 2011, 21: 467-482 doi: 10.1007/s00193-011-0322-2
    [137]
    Hooseria SJ, Skews BW. Shock wave interactions between slender bodies. Shock Waves, 2017(27): 109-126
    [138]
    Kussoy MI, Viegas JR, Horstmann CC. Investigation of a three-dimensional shock wave separated boundary layer. AIAA Journal, 1980, 18: 1477-1483 doi: 10.2514/3.50907
    [139]
    Panov YA. Interaction of incident three-dimensional shock wave with a turbulent boundary layer. Fluid Dynamics, 1968, 3: 108-110
    [140]
    Bordelon WJ, Frost AL, Reed DK, et al. Stage separation wind tunnel tests of a generic two-stage-to-orbit launch vehicle//21st Applied Aerodynamics Conference, Orlando, Florida, 2003
    [141]
    Pamadi BN, Tartabini PV, Starr BR. Ascent, stage separation and glideback performance of a partially reusable small launch vehicle//42nd AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 2004
    [142]
    Pamadi BN, Neirynck TA, Covell PF, et al. Simulation and analyses of staging maneuvers of next generation reusable launch vehicles//AIAA Atmospheric Flight Mechanics Conference and Exhibit, Providence, Rhode Island, 2004
    [143]
    Buning PG, Gomez RJ, Scallion WI. CFD approaches for simulation of wing-body stage separation//22nd Applied Aerodynamics Conference and Exhibit, Providence, Rhode Island, 2004
    [144]
    Murphy KJ, Buning PG, Pamadi BN, et al. Overview of transonic to hypersonic stage separation tool development for multi-stage-to-orbit concepts//24th AIAA Aerodynamic Measurement Technology and Ground Testing Conference, Portland, Oregon, 2004
    [145]
    Albertson CW, Tartabini PV, Pamadi BN. End-to-end simulation of launch vehicle trajectories including stage separation dynamics//AIAA Atmospheric Flight Mechanics Conference, Minneapolis, Minnesota, 2012
    [146]
    Erickson GE. Wind tunnel investigation of the supersonic stage separation aerodynamics of a generic 0.0175-scale Bimese Two-Stage-to-Orbit reusable launch vehicle configuration. NASA/TM–2020-220582, Langley Research Center, 2020
    [147]
    Hurley MJ, Carrie GW. Stage separation of parallel-staged shuttle vehicles: a capability assessment. Journal of Spacecraft, 1972, 9(10): 764-771 doi: 10.2514/3.30393
    [148]
    Pamadi BN, Hotchko NJ, Samareh J, et al. Simulation and analyses of multi-body separation in launch vehicle staging environment//14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conference, 2006
    [149]
    Pamadi BN, Tartabini PV, Toniolo MD, et al. Application of constraint force equation methodology for launch vehicle stage separation. Journal of Spacecraft and Rockets, 2013, 50(1): 191-205 doi: 10.2514/1.A32048
    [150]
    Wang JCT, Than PT, Widhopf GF. Multi-body launch vehicle flowfield simulation//29th Aerospace Sciences Meeting, Reno, Nevada, 1991
    [151]
    Winski CS, Danehy PM, Watkins AN, et al. Space Launch system booster separation supersonic powered testing with surface and off-body measurement//AIAA Aviation 2019 Forum, Dallas, Texas, 2019
    [152]
    Wingfield LL. Staging evaluation of a two-stage-to-orbit vehicle at Mach 8//10th AIAA/NAL-NASDA-ISAS International Space Planes and Hypersonic Systems and Technologies Conference, Kyoto, Japan, 2001
    [153]
    Breitsamter C, Laschka B. Wind tunnel tests for separation dynamics modeling of a two-stage hypersonic vehicle//10th AIAA/NAL-NASDA-ISAS International Space Planes and Hypersonic Systems and Technologies Conference, Kyoto, Japan, 2001
    [154]
    Naftel JC, Powell RW. Aerodynamic separation and glideback of a Mach 3 staged orbiter//29th Aerospace Sciences Meeting, Reno, Nevada, 1991
    [155]
    Uematsu T, Ishida T, Aso S, et al. Reduction of aerodynamic interference for separation of two-stage reusable launch vehicles//47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition, Orlando, Florida, 2009
    [156]
    Uematsu T, Aso S, Tani Y. Aerodynamic interference reduction method for two-stage launch vehicles supersonic separation//49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Orlando, Florida, 2011
    [157]
    Song W, Dong JG, Lu W, et al. Trajectory and attitude deviations for internal store separation due to quasi-steady test method. Chinese Journal of Aeronautics, 2022, 35(2): 74-81 doi: 10.1016/j.cja.2021.03.007
    [158]
    Song W, Ai BC. Analysis of aircraft-store compatibility for internal weapons separation. Aerospace Science and Technology, 2021, 110: 106528 doi: 10.1016/j.ast.2021.106528
    [159]
    Song W, Ai BC, Zhao XJ, et al. Influence of control device on store separation from an open cavity. Aerospace Science and Technology, 2020, 106: 106117 doi: 10.1016/j.ast.2020.106117
    [160]
    蒋增辉, 宋威, 陈农等. 高超声速风洞子母弹大迎角抛壳投放试验. 实验流体力学, 2016, 30(5): 42-48 (Jiang Zenghui, Song Wei, Chen Nong, et al. Hypersonic wind tunnel drop-model test on cover ejection from cargo projectile at large angle of attack. Journal of Experiments in fluid Mechanics, 2016, 30(5): 42-48 (in Chinese) doi: 10.11729/syltlx20160020

    Jiang Zenghui, Song Wei, Chen Nong, et al. Hypersonic wind tunnel drop-model test on cover ejection from cargo projectile at large angle of attack. Journal of Experiments in fluid Mechanics, 2016, 30(5): 42-48 (in Chinese) doi: 10.11729/syltlx20160020
    [161]
    宋威, 张宁, 朱剑等. 风洞投放试验技术的研究现状与应用综述. 航空学报, 2021, 42(6): 024417 (Song Wei, Zhang Ning, Zhu Jian, et al. Research status and application of wind tunnel drop test technology: review. Acta Aeronautica et Astronautica Sinica, 2021, 42(6): 024417 (in Chinese)

    Song Wei, Zhang Ning, Zhu Jian, et al. Research status and application of wind tunnel drop test technology: review. Acta Aeronautica et Astronautica Sinica, 2021, 42(6): 024417 (in Chinese)
    [162]
    童秉刚, 陈强. 关于非定常空气动力学. 力学进展, 1983, 13(4): 377-394 (Tong Binggang, Chen Qiang. Some remarks on unsteady aerodynamics. Advance in Mechanics, 1983, 13(4): 377-394 (in Chinese)

    Tong binggang, Chen Qiang. Some remarks on unsteady aerodynamics. Advance in Mechanics, 1983, 13(4): 377-394 (in Chinese)
    [163]
    Whalen TJ, Laurence SJ. Experiments on the separation of sphere clusters in hypersonic flow. Experiments in Fluids, 2021, 62: 70 doi: 10.1007/s00348-021-03157-z
  • Related Articles

    [1]Zou Lin, Zuo Hongcheng, Liu Diwei, Wang Jiahui, Xu Jinli. ACTIVE FLOW CONTROL OF WAVY CYLINDER BASED ON STEADY BLOWING AND SUCTION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(11): 2970-2983. DOI: 10.6052/0459-1879-22-212
    [2]Yang Pengyu, Zhang Xin, Lai Qingren, Che Binghui, Chen Lei. EXPERIMENTAL INVESTIGATION OF THE INFLUENCE OF SCALING EFFECTS OF WINGS ON THE FLOW SEPARATION CONTROL USING PLASMA ACTUATORS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(12): 3321-3330. DOI: 10.6052/0459-1879-21-379
    [3]Zhang Wenwen, Xu Rongwu, He Lin, Pan Longde, Zhao Jiaxi. EXPERIMENTAL INVESTIGATION INTO THE CONTROL OF FLOW-INDUCED OSCILLATIONS OF UNDERWATER APERTURE-CAVITIES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(10): 2762-2775. DOI: 10.6052/0459-1879-21-143
    [4]Luo Kai, Wang Qiu, Li Yixiang, Li Jinping, Zhao Wei. RESEARCH PROGRESS ON MAGNETOHYDRODYNAMIC FLOW CONTROL UNDER TEST CONDITIONS WITH HIGH TEMPERATURE REAL GAS EFFECT[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(6): 1515-1531. DOI: 10.6052/0459-1879-21-067
    [5]Huang Guangjing, Dai Yuting, Yang Chao. PLASMA-BASED FLOW CONTROL ON PITCHING AIRFOIL AT LOW REYNOLDS NUMBER[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(1): 136-155. DOI: 10.6052/0459-1879-20-183
    [6]Zhang Weiguo, Shi Zheyu, Li Guoqiang, Yang Yongdong, Huang Minqi, Bai Yunmao. NUMERICAL STUDY ON DYNAMIC STALL FLOW CONTROL FOR WIND TURBINE AIRFOIL USING PLASMA ACTUATOR[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1678-1689. DOI: 10.6052/0459-1879-20-090
    [7]Wang Wei, Zhang Qingdian, Tang Tao, An Zhaoyang, Tong Tianhao, Wang Xiaofang. MECHANISM INVESTIGATION OF WATER INJECTION ON SUPPRESSING HYDROFOIL CLOUD CAVITATION FLOW[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 12-23. DOI: 10.6052/0459-1879-19-282
    [8]Yiwen Li, Yutian Wang, Lei Pang, Lianghua Xiao, Zhiwen Ding, Pengzhen Duan. RESEARCH PROGRESS OF PLASMA/MHD FLOW CONTROL IN INLET[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 311-321. DOI: 10.6052/0459-1879-18-290
    [9]Yan Hong, Lin Ke. CONTROL MECHANISM OF THERMAL ACTUATOR IN SUPERSONIC ROUND JET[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(4): 557-570. DOI: 10.6052/0459-1879-14-379
    [10]Chen Yaohui, Li Baoming, Pan Xuchao, Liu Yixin. RESEARCH OF THE CONTROL EFFICIENCY OF LIFT INCREASE AND DRAG REDUCTION BASE ON FLOW AROUND HYDROFOIL CONTROLLED BY LORENTZ FORCE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(3): 414-421. DOI: 10.6052/0459-1879-14-346
  • Cited by

    Periodical cited type(9)

    1. 解浩,孟国亮,林小军,李宝栋. 前缘狭缝对NACA0015水翼非定常空化的影响. 机床与液压. 2025(04): 166-170 .
    2. 赵伟国,亢艳东,李清华,薛子阳. 叶片吸力面不同结构对离心泵空化初生的影响. 振动与冲击. 2022(07): 23-30 .
    3. 李智健,王巍,唐滔,安昭阳,纪祥,刘明雨. 主动射流抑制云空化及流致噪声的研究. 中国造船. 2022(04): 124-132 .
    4. 孙龙泉,颜皓,马贵辉,赵纪鹏. 环形槽对通气空泡融合的促进作用分析. 力学学报. 2021(02): 386-394 . 本站查看
    5. 陈国孝,刘喆,邵传平. 旋转振荡板尾流的控制研究. 力学学报. 2021(07): 1856-1875 . 本站查看
    6. 王恋舟,吴铁成,郭春雨. 螺旋桨梢涡不稳定性机理与演化模型研究. 力学学报. 2021(08): 2267-2278 . 本站查看
    7. 张珍,叶舒然,岳杰顺,王一伟,黄晨光. 基于组合神经网络的雷诺平均湍流模型多次修正方法. 力学学报. 2021(06): 1532-1542 . 本站查看
    8. 谢庆墨,陈亮,张桂勇,孙铁志. 基于动力学模态分解法的绕水翼非定常空化流场演化分析. 力学学报. 2020(04): 1045-1054 . 本站查看
    9. 胡建军,朱晴,王美达,金瑶兰,王思民,孔祥东. 近距离下射流冲击平板PIV实验研究. 力学学报. 2020(05): 1350-1361 . 本站查看

    Other cited types(12)

Catalog

    Article Metrics

    Article views (2703) PDF downloads (451) Cited by(21)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return