EI、Scopus 收录
中文核心期刊
Kong Xijun, Xing Haojie, Li Hongjing. An explicit spectral-element approach to fluid-solid coupling problems in seismic wave propagation. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(9): 2513-2528. DOI: 10.6052/0459-1879-22-068
Citation: Kong Xijun, Xing Haojie, Li Hongjing. An explicit spectral-element approach to fluid-solid coupling problems in seismic wave propagation. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(9): 2513-2528. DOI: 10.6052/0459-1879-22-068

AN EXPLICIT SPECTRAL-ELEMENT APPROACH TO FLUID-SOLID COUPLING PROBLEMS IN SEISMIC WAVE PROPAGATION

  • Received Date: February 12, 2022
  • Accepted Date: April 06, 2022
  • Available Online: April 06, 2022
  • Fluid-solid coupling seismic wave motion problems are aimed at investigating the characteristics and laws of seismic wave propagation in the complex system composed of fluid and solid media. In traditional simulation methods, numerical solutions of acoustic and elastic wave equations are generally used to describe the waves in ideal fluid and elastic solid respectively, and the coupling between the two media with different properties is dealt with in real time. Consequently, traditional methods suffer from complex numerical schemes, relatively low numerical simulation accuracy and computational efficiency. Based on spectral element method and multi-transmitting formula artificial boundary condition, a high order explicit numerical method for fluid-solid coupling seismic wave motion problems is developed in this paper. This method uses a unified computational framework, in which Biot’s equations for saturated porous media can degenerate to acoustic and elastic wave equations for ideal fluid and elastic solid respectively. Three numerical examples of ideal fluid-saturated porous medium-elastic solid system are given: the horizontal layered site model with vertical incidence of P wave, the irregular layered interface model under obliquely incident P wave and arbitrary shape interface model under obliquely incident P wave. The accuracy and efficiency of the proposed method are verified in comparison with the results of transfer matrix method and lumped mass finite element method. The numerical simulation results show that compared with the traditional finite element method, this method can obtain higher numerical accuracy with much less nodes, and can reliably simulate the dynamic response of fluid-solid coupling problems in a wider frequency range. The proposed method fully represents the characteristics of high precision, high efficiency and flexibility to handle complex sites.
  • [1]
    陈少林, 柯小飞, 张洪翔. 海洋地震工程流固耦合问题统一计算框架. 力学学报, 2019, 51(2): 594-606 doi: 10.6052/0459-1879-18-333

    Chen Shaolin, Ke Xiaofei, Zhang Hongxiang. A unified computational framework for fluid-solid coupling in marine earthquake engineering. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 594-606 (in Chinese) doi: 10.6052/0459-1879-18-333
    [2]
    陈少林, 程书林, 柯小飞. 海洋地震工程流固耦合问题统一计算框架——不规则界面情形. 力学学报, 2019, 51(5): 1517-1529 doi: 10.6052/0459-1879-19-156

    Chen Shaolin, Cheng Shulin, Ke Xiaofei. A unified computational framework for fluid-solid coupling in marine earthquake engineering: Irregular interface case. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(5): 1517-1529 (in Chinese) doi: 10.6052/0459-1879-19-156
    [3]
    杜修力, 王进廷. 拱坝-可压缩库水-地基地震波动反应分析方法. 水利学报, 2002, 6: 83-90 doi: 10.3321/j.issn:0559-9350.2002.07.015

    Du Xiuli, Wang Jinting. Analysis method for seismic response of arch dam-compressible water-foundation systems. Journal of Hydraulic Engineering, 2002, 35(6): 83-90 (in Chinese) doi: 10.3321/j.issn:0559-9350.2002.07.015
    [4]
    赵成刚, 王进廷, 史培新等. 流体饱和两相多孔介质动力反应分析的显式有限元法. 岩土工程学报, 2001, 23(2): 178-182 doi: 10.3321/j.issn:1000-4548.2001.02.010

    Zhao Chenggang, Wang Jinting, Shi Peixin, et al. Dynamic analysis of fluid-saturated porous media by using explicit finite element method. Chinese Journal of Geotechnical Engineering, 2001, 23(2): 178-182 (in Chinese) doi: 10.3321/j.issn:1000-4548.2001.02.010
    [5]
    王进廷. 高混凝土坝—可压缩库水—淤砂—地基系统地震反应分析研究. [博士论文]. 北京: 中国水利水电科学研究院, 2001

    Wang Jinting. The analyses of seismic response of high concrete dam-compressible water-sediment-foundation systems. [PhD Thesis]. Beijing: China Institute of Water Resources and Hydropower Research, 2001 (in Chinese)
    [6]
    王进廷, 杜修力, 张楚汉. 重力坝-库水-淤砂-地基系统动力分析的时域显式有限元模型. 清华大学学报(自然科学版), 2003, 43(8): 1112-1115 doi: 10.3321/j.issn:1000-0054.2003.08.031

    Wang Jinting, Du Xiuli, Zhang Chuhan. Explicit finite element model for dynamic analysis of dam-reservoirsediment- foundation system. Journal of Tsinghua University (Science and Technology), 2003, 43(8): 1112-1115 (in Chinese) doi: 10.3321/j.issn:1000-0054.2003.08.031
    [7]
    李伟华. 含饱和土的复杂局部场地波动散射问题的解析解和显式有限元数值模拟. [博士论文]. 北京: 北京交通大学, 2004

    Li Weihua. Analytical solutions and numerical simulation of the scattering of plane waves by local sites with saturated soil. [PhD Thesis]. Beijing: Beijing Jiaotong University, 2004 (in Chinese)
    [8]
    陈少林, 廖振鹏. 多次透射公式在衰减波场中的实现. 地震学报, 2003, 25(3): 272-279 doi: 10.3321/j.issn:0253-3782.2003.03.005

    Chen Shaolin, Liao Zhenpeng. Multi-transmitting formula for attenuating waves. Acta Seismologica Sinica, 2003, 25(3): 272-279 (in Chinese) doi: 10.3321/j.issn:0253-3782.2003.03.005
    [9]
    陈少林, 廖振鹏, 陈进. 两相介质近场波动模拟的一种解耦有限元方法. 地球物理学报, 2005, 48(4): 909-917 doi: 10.3321/j.issn:0001-5733.2005.04.025

    Chen Shaolin, Liao Zhenpeng, Chen Jin. A decoupling FEM for simulating near-field wave motions in two-phase media. Chinese Journal of Geophysics, 2005, 48(4): 909-917 (in Chinese) doi: 10.3321/j.issn:0001-5733.2005.04.025
    [10]
    李亮, 杜修力, 赵成刚等. 流体饱和两相多孔介质动力反应计算分析. 岩土力学, 2008, 29(1): 113-118 doi: 10.3969/j.issn.1000-7598.2008.01.021

    Li Liang, Du Xiuli, Zhao Chenggang, et al. Calculation and analysis of dynamic response of fluid-saturated porous media. Rock and Soil Mechanics, 2008, 29(1): 113-118 (in Chinese) doi: 10.3969/j.issn.1000-7598.2008.01.021
    [11]
    李亮, 李果, 杜修力等. 饱和两相介质近场波动问题的一种时域全显式数值计算方法. 工程力学, 2020, 37(8): 20-31 doi: 10.6052/j.issn.1000-4750.2019.08.0479

    Li Liang, Li Guo, Du Xiuli, et al. A full explicit numerical algorithm for near-field wave motion of fluid-saturated porous media in time domain. Engineering Mechanics, 2020, 37(8): 20-31 (in Chinese) doi: 10.6052/j.issn.1000-4750.2019.08.0479
    [12]
    宋佳. 饱和土场地波动数值模拟方法及其工程应用. [博士论文], 北京: 北京工业大学, 2017

    Song Jia. Wave numerical method of saturated site soil and its engineering application. [PhD Thesis]. Beijing: Beijing University of Technology, 2017 (in Chinese)
    [13]
    Xu CS, Song J, Du XL, et al. A completely explicit finite element method for solving dynamic u-p equations of fluid-saturated porous media. Soil Dynamics and Earthquake Engineering, 2017, 97: 364-376 doi: 10.1016/j.soildyn.2017.03.016
    [14]
    梁建文, 吴梦桃, 巴振宁. 流体饱和半空间二维地形三分量弹性波散射间接边界元模拟. 地球物理学报, 2021, 64(8): 2766-2779 doi: 10.6038/cjg2021O0248

    Liang Jianwen, Wu Mengtao, Ba Zhenning. IBEM simulation of three-component scattering of elastic waves in a fluid-saturated half-space with 2 D topography. Chinese Journal of Geophysics, 2021, 64(8): 2766-2779 (in Chinese) doi: 10.6038/cjg2021O0248
    [15]
    巴振宁, 仲浩, 梁建文等. 沉积介质各向异性参数对三维沉积盆地地震动的影响. 应用基础与工程科学学报, 2020, 28(6): 1470-1488

    Ba Zhenning, Zhong Hao, Liang Jianwen, et al. Influence of Anisotropic Parameters of Sedimentary Media on Earthquake Ground Motionin a 3 D Alluvial Basin. Journal of Basic Science and Engineering, 2020, 28(6): 1470-1488 (in Chinese)
    [16]
    刘中宪, 刘英, 孟思博等. 基于间接边界元法的近断层沉积谷地地震动模拟. 岩土力学, 2021, 42(4): 1141-1155

    Liu Zhongxian, Liu Ying, Meng Sibo, et al. Near-fault ground motion simulation of alluvial valley based on indirect boundary element method. Rock and Soil Mechanics, 2021, 42(4): 1141-1155 (in Chinese)
    [17]
    Wang PG, Zhang GL, Zhao M, et al. Semi-analytical solutions for the wave-induced and vertical earthquake-induced responses of a fluid-saturated seabed-bedrock system. Soil Dynamics and Earthquake Engineering, 2020, 139: 106391 doi: 10.1016/j.soildyn.2020.106391
    [18]
    Zhang GL, Wang PG, Zhao M, et al. Seismic structure-water-sediment-rock interaction model and its application to immersed tunnel analysis under obliquely incident earthquake. Tunnelling and Underground Space Technology, 2021, 109: 103758 doi: 10.1016/j.tust.2020.103758
    [19]
    Huang YM, Wang PM, Zhao M, et al. Dynamics responses of an end-bearing pile subjected to horizontal earthquakes considering water-pile-soil interactions. Ocean Engineering, 2021, 238: 109726 doi: 10.1016/j.oceaneng.2021.109726
    [20]
    Zhao M, Zhang GL, Wang PG, et al. An accurate frequency-domain model for seismic responses of breakwater-seawater-seabed-bedrock system. Ocean Engineering, 2020, 197: 106843 doi: 10.1016/j.oceaneng.2019.106843
    [21]
    Zhang GL, Zhao M, Du XL, et al. A frequency-dependent absorbing boundary condition for numerically solving u-U elastic wave equations in layered and fluid-saturated porous media. Soil Dynamics and Earthquake Engineering, 2020, 135: 106189 doi: 10.1016/j.soildyn.2020.106189
    [22]
    Chen WY, Huang LC, Xu LY, et al. Numerical study on the frequency response of offshore monopile foundation to seismic excitation. Computers and Geotechnics, 2021, 138: 104342 doi: 10.1016/j.compgeo.2021.104342
    [23]
    Chen WY, Wang ZC, Chen SL, et al. Frequency response analysis of concrete seawall including soil-structure-seawater interaction. Soil Dynamics and Earthquake Engineering, 2020, 139: 106392 doi: 10.1016/j.soildyn.2020.106392
    [24]
    Sun YC, Zhang W, Ren HX, et al. 3D seismic-wave modeling with a topographic fluid–solid interface at the sea bottom by the curvilinear-grid finite-difference method. Bulletin of the Seismological Society of America, 2021, 111(5): 2753-2779 doi: 10.1785/0120200363
    [25]
    Liu JB, Bao X, Wang DY, et al. Seismic response analysis of the reef-seawater system under incident SV wave. Ocean Engineering, 2019, 180: 199-210 doi: 10.1016/j.oceaneng.2019.03.068
    [26]
    Bao X, Liu JB, Li ST, et al. Seismic response analysis of the reef-seawater system under obliquely incident P and SV waves. Ocean Engineering, 2020, 200: 1-27
    [27]
    宝鑫, 刘晶波, 王东洋等. P 波垂直入射下海域岛礁场地动力反应分析. 工程力学, 2019, 36(s1): 1-7

    Bao Xin, Liu Jingbao, Wang Dongyang, et al. Seismic response analysis of offshore reef site under incident P wave, Engineering Mechanics, 2019, 36(s1): 1-7 (in Chinese)
    [28]
    宝鑫, 刘晶波, 王东洋等. 局部成层的海域岛礁场地地震反应分析. 振动与冲击, 2020, 39(21): 55-64

    Bao Xin, Liu Jingbao, Wang Dongyang, et al. Seismic response analysis of local layered sea reef site, Journal of Vibration and Shock, 2020, 39(21): 55-64 (in Chinese)
    [29]
    陈国兴, 朱翔, 赵丁凤等. 珊瑚岛礁场地非线性地震反应特征分析. 岩土工程学报, 2019, 41(3): 405-413

    Chen Guoxing, Zhu Xiang, Zhao Dingfeng, et al. Nonlinear seismic response characteristics of a coral island site. Chinese Journal of Geotechnical Engineering, 2019, 41(3): 405-413 (in Chinese)
    [30]
    陈国兴, 岳文泽, 阮滨等. 金塘海峡海床地震反应特征的二维非线性分析. 岩土工程学报, 2021, 43(11): 1967-1975

    Chen Guoxing, Yue Wenze, Ruan Bin, et al. Two-dimensional nonlinear seismic response analysis for seabed site effect assessment in Jintang Strait. Chinese Journal of Geotechnical Engineering, 2021, 43(11): 1967-1975 (in Chinese)
    [31]
    Komatitsch D, Barnes C, Tromp J. Wave propagation near a fluid-solid interface: A spectral element approach. Geophysics, 2000, 65(2): 623-631 doi: 10.1190/1.1444758
    [32]
    Morency C, Tromp J. Spectral-element simulation of wave propagation in porous media. Geophysical Journal International, 2008, 175: 301-345 doi: 10.1111/j.1365-246X.2008.03907.x
    [33]
    De Basabe JD, Sen MK. Grid dispersion and stability criteria of some common finite-element methods for acoustic and elastic wave equations. Geophysics, 2007, 72(6): T81-T95 doi: 10.1190/1.2785046
    [34]
    De Basabe JD, Sen MK. A comparison of finite-difference and spectral-element methods for elastic wave propagation in media with a fluid-solid interface. Geophysical Journal International, 2015, 200: 278-298 doi: 10.1093/gji/ggu389
    [35]
    Duczek S, Gravenkamp H. Mass lumping techniques in the spectral element method: On the equivalence of the row-sum, nodal quadrature, and diagonal scaling methods. Computer Methods in Applied Mechanics and Engineering, 2019, 353: 516-569 doi: 10.1016/j.cma.2019.05.016
    [36]
    陈少林, 孙杰, 柯小飞. 平面波输入下海水-海床-结构动力相互作用分析. 力学学报, 2020, 52(02): 578-590 doi: 10.6052/0459-1879-19-354

    Chen Shaolin, Sun Jie, Ke Xiaofei. Analysis of water-seabed-structure dynamic interaction excited by plane waves. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 578-590 (in Chinese) doi: 10.6052/0459-1879-19-354
    [37]
    Xing HJ, Li XJ, Li HJ, et al. The theory and new unified formulas of displacement-type local absorbing boundary conditions. Bulletin of the Seismological Society of America, 2021, 111(2): 801-824 doi: 10.1785/0120200155
    [38]
    Xing HJ, Li XJ, Li HJ, et al. Spectral-element formulation of multi-transmitting formula and its accuracy and stability in 1D and 2D seismic wave modeling. Soil Dynamics and Earthquake Engineering, 2021, 140: 1-15
    [39]
    邢浩洁, 李鸿晶. 透射边界条件在波动谱元模拟中的实现: 一维波动. 力学学报, 2017, 49(2): 367-379 doi: 10.6052/0459-1879-16-282

    Xing Haojie, Li Hongjing. Implementation of multi-transmitting boundary condition for wave motion simulation by spectral element method: one dimension case. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(2): 367-379 (in Chinese) doi: 10.6052/0459-1879-16-282
    [40]
    邢浩洁, 李鸿晶. 透射边界条件在波动谱元模拟中的实现: 二维波动. 力学学报, 2017, 49(4): 894-906 doi: 10.6052/0459-1879-16-393

    Xing Haojie, Li Hongjing. Implementation of multi-transmitting boundary condition for wave motion simulation by spectral element method: two dimension case. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(4): 894-906 (in Chinese) doi: 10.6052/0459-1879-16-393
    [41]
    赵宇昕, 陈少林. 关于传递矩阵法分析饱和成层介质响应问题的讨论. 力学学报, 2016, 48(05): 1145-1158 doi: 10.6052/0459-1879-16-029

    Zhao Yuxin, Chen Shaolin. Discussion on the matrix propagator method to analyze the response of saturated layered media. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(5): 1145-1158 (in Chinese) doi: 10.6052/0459-1879-16-029
    [42]
    廖振鹏. 工程波动理论导论(第二版). 北京: 科学出版社, 2002

    Liao Zhenpeng. Introduction to Wave Motion Theories in Engineering (Second Edition). Beijing: Science Press, 2002 (in Chinese)
    [43]
    廖振鹏, 周正华, 张艳红. 波动数值模拟中透射边界的稳定实现. 地球物理学报, 2002, 45(4): 533-545 doi: 10.3321/j.issn:0001-5733.2002.04.011

    Liao Zhenpeng, Zhou Zhenghua, Zhang Yanhong. Stable implementation of transmitting boundary in numerical simulation of wave motion. Chinese Journal of Geophysics, 2002, 45(4): 533-545 (in Chinese) doi: 10.3321/j.issn:0001-5733.2002.04.011
    [44]
    柯小飞, 陈少林, 张洪翔. P-SV波入射时海水-层状海床体系的自由场分析. 振动工程学报, 2019, 32(6): 966-976

    Ke Xiaofei, Chen Shaolin, Zhang Hongxiang. Free-field analysis of sea water-seabed system for incident plane P-SV waves. Journal of Vibration Engineering, 2019, 32(6): 966-976 (in Chinese)
    [45]
    Noh G, Ham S, Bathe KJ. Performance of an implicit time integration scheme in the analysis of wave propagations. Computers & Structures, 2013, 123: 93-105
    [46]
    Kwon SB, Bathe KJ, Noh G. An analysis of implicit time integration schemes for wave propagations. Computers & Structures, 2020, 230: 106188
    [47]
    杨林德, 杨志锡. 各向异性饱和土体的渗流耦合分析和数值模拟. 岩石力学与工程学报, 2002(10): 1447-1451 doi: 10.3321/j.issn:1000-6915.2002.10.003

    Yang Linde, Yang Zhixi. Coupling analyses and numeric simulations on seepage flow in anisotropic saturated soils. Chinese Journal of Rock Mechanics and Engineering, 2002(10): 1447-1451 (in Chinese) doi: 10.3321/j.issn:1000-6915.2002.10.003
    [48]
    Komatitsch D, Barnes C, Tromp J. Simulation of anisotropic wave propagation based upon a spectral element method. Geophysics, 2000, 65(4): 1251-1260 doi: 10.1190/1.1444816
  • Related Articles

    [1]Li Xiaojun, Zhang Xun, Xing Haojie. A TRANSMITTING BOUNDARY WITH TIME-VARYING COMPUTATIONAL ARTIFICIAL WAVE VELOCITIES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(10): 2924-2935. DOI: 10.6052/0459-1879-24-178
    [2]Yu Yanyan, Rui Zhiliang, Ding Haiping. PARALLEL SPECTRAL ELEMENT METHOD FOR 3D LOCAL-SITE GROUND MOTION SIMULATIONS OF WAVE SCATTERING PROBLEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(6): 1342-1354. DOI: 10.6052/0459-1879-23-052
    [3]Shi Xin, Zhao Jianning, Yang Miaomiao, Zhang Jialei, Liu Donghuan. SPECTRAL ELEMENT METHOD FOR NONLINEAR THERMOMECHANICAL COUPLING PROBLEMS WITH HIGH TEMPERATURE GRADIENT AND THERMAL CONTACT RESISTANCE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(7): 1960-1970. DOI: 10.6052/0459-1879-22-062
    [4]Kong Xijun, Xing Haojie, Li Hongjing, Zhou Zhenghua. AN APPROACH TO CONTROLLING DRIFT INSTABILITY OF MULTI-TRANSMITTING FORMULA[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 3097-3109. DOI: 10.6052/0459-1879-21-435
    [5]Xing Haojie, Li Hongjing. IMPLEMENTATION OF MULTI-TRANSMITTING BOUNDARY CONDITION FOR WAVE MOTION SIMULATION BY SPECTRAL ELEMENT METHOD:TWO DIMENSION CASE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(4): 894-906. DOI: 10.6052/0459-1879-16-393
    [6]Xing Haojie, Li Hongjing. IMPLEMENTATION OF MULTI-TRANSMITTING BOUNDARY CONDITION FOR WAVE MOTION SIMULATION BY SPECTRAL ELEMENT METHOD: ONE DIMENSION CASE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(2): 367-379. DOI: 10.6052/0459-1879-16-282
    [7]Wu Zeyan, Wang Lifeng, Wu Zhe. THE SCALED BOUNDARY COORDINATE INTERPOLATION METHOD AND ITS APPLICATION TO SPECTRAL ELEMENT METHOD: NUMERICAL SIMULATION OF THE EULER EQUATIONS OVER UNBOUNDED DOMAINS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(4): 619-623. DOI: 10.6052/0459-1879-13-026
    [8]Ni Min, Gou Xiaoping, Wang Qizhi. STRESS INTENSITY FACTOR FORMULAS FOR DCDC AND SCDC SPECIMENS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(1): 94-102. DOI: 10.6052/0459-1879-12-179
    [9]Zhijian Rong, Chuanju Xu. Spectral vanishing viscosity for large-eddy simulations by spectral element methods[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(2): 155-161. DOI: 10.6052/0459-1879-2009-2-2007-446

Catalog

    Article Metrics

    Article views (965) PDF downloads (174) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return