Citation: | Wu Jianying, Hong Yifeng. Phase-field cohesive modeling of fracture in storage particles of lithium-ion batteries. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(9): 2472-2489. DOI: 10.6052/0459-1879-22-057 |
[1] |
王其钰, 王朔, 张杰男等. 锂离子电池失效分析概述. 储能科学与技术, 2017, 6(5): 1008-1025
Wang Qiyu, Wang Shuo, Zhang Jienan, et al. Overview of failure analysis of lithium ion batteries. Energy Storage Science and Technology, 2017, 6(5): 1008-1025 (in Chinese)
|
[2] |
Deng J, Bae C, Marcicki J, et al. Safety modelling and testing of lithium-ion batteries in electrified vehicles. Nature Energy, 2018, 3: 261-266
|
[3] |
Fu R, Xiao M, Choe S. Modeling, validation and analysis of mechanical stress generation and dimension changes of a pouch type high power Li-ion battery. Journal of Power Sources, 2013, 224: 211-224
|
[4] |
Zheng H, Tan L, Liu G, et al. Calendering effects on the physical and electrochemical properties of Li[Ni1/3 Mn1/3 Co1/3]O2 cathode. Journal of Power Sources, 2012, 208: 52-57
|
[5] |
Wang D, Wu X, Wang Z, et al. Cracking causing cyclic instability of LiFePO4 cathode material. Journal of Power Sources, 2005, 140: 125-128
|
[6] |
Bhattacharya S, Riahi AR, Alpas AT. A transmission electron microscopy study of crack formation and propagation in electrochemically cycled graphite electrode in lithium-ion cells. Journal of Power Sources, 2011, 196: 8719-8727
|
[7] |
Chakraborty A, Ramakrishnan N. Prediction of electronic conductivity of a degrading electrode material using finite element method. Computational Materials Science, 2013, 69: 455-465
|
[8] |
Markervich E, Salitra G, Levi MD, et al. Capacity fading of lithiated graphite electrodes studied by a combination of electroanalytical methods, Raman spectroscopy and SEM. Journal of Power Sources, 2005, 146: 146-150 doi: 10.1016/j.jpowsour.2005.03.107
|
[9] |
Ramakrishnan N, Joglekar MM, Inguva S. A phenomenological degradation model for cyclic aging of lithium ion cell materials. Journal of the Electrochemical Society, 2012, 160: A125
|
[10] |
Fincher CD, Ojeda D, Pharr, G M, et al. Mechanical properties of metallic lithium: from nano to bulk scales. Acta Materialia, 2020, 186: 215-222 doi: 10.1016/j.actamat.2019.12.036
|
[11] |
Zhang X, Krischok A, Linder C. A variational framework to model diffusion induced large plastic deformation and phase field fracture during initial two-phase lithiation of silicon electrodes. Computer Methods in Applied Mechanics and Engineering, 2016, 312: 51-77 doi: 10.1016/j.cma.2016.05.007
|
[12] |
Xu R, Sun H, de Vasconcelos LS, et al. Mechanical and structural degradation of LiNi xMn yCo zO2 cathode in Li. Journal of the Electrochemical Society, 2017, 164: A3333 doi: 10.1149/2.1751713jes
|
[13] |
Klinsmann M, Rosato D, Kamlah M, et al. Modeling crack growth during Li extraction in storage particles using a fracture phase field approach. Journal of the Electrochemical Society, 2015, 163: A102
|
[14] |
Klinsmann M, Rosato D, Kamlah M, et al. Modeling crack growth during Li insertion in storage particles using a fracture phase field approach. Journal of the Mechanics and Physics of Solids, 2016, 92: 313-344 doi: 10.1016/j.jmps.2016.04.004
|
[15] |
Zhang Y, Zhao C, Guo Z. Simulation of crack behavior of secondary particles in Li-ion battery electrodes during lithiation/de-lithiation cycles. International Journal of Mechanical Sciences, 2019, 155: 178-186 doi: 10.1016/j.ijmecsci.2019.02.042
|
[16] |
Mandal TK, Nguyen VP, Wu JY. Length scale and mesh bias sensitivity of phase-field models for brittle and cohesive fracture. Engineering Fracture Mechanics, 2019, 217: 106532 doi: 10.1016/j.engfracmech.2019.106532
|
[17] |
Kumar A, Bourdin B, Francfort GA, et al. Revisiting nucleation in the phase-field approach to brittle fracture. Journal of the Mechanics and Physics of Solids, 2020, 142: 104027 doi: 10.1016/j.jmps.2020.104027
|
[18] |
Wu JY. A unified phase-field theory for the mechanics of damage and quasi-brittle failure. Journal of the Mechanics and Physics of Solids, 2017, 103: 72-99 doi: 10.1016/j.jmps.2017.03.015
|
[19] |
Bourdin B, Francfort GA, Marigo JJ. Numerical experiments in revisited brittle fracture. Journal of the Mechanics and Physics of Solids, 2000, 48: 797-826 doi: 10.1016/S0022-5096(99)00028-9
|
[20] |
Pham K, Amor H, Marigo JJ, et al. Gradient damage models and their use to approximate brittle fracture. International Journal of Damage Mechanics, 2011, 20: 618-652 doi: 10.1177/1056789510386852
|
[21] |
Wu JY. A geometrically regularized gradient-damage model with energetic equivalence. Computer Methods in Applied Mechanics and Engineering, 2018, 328: 612-637 doi: 10.1016/j.cma.2017.09.027
|
[22] |
Wu JY, Nguyen VP. A length scale insensitive phase-field damage model for brittle fracture. Journal of the Mechanics and Physics of Solids, 2018, 119: 20-42 doi: 10.1016/j.jmps.2018.06.006
|
[23] |
Zhang P, Hu X, Wang X, et al. An iteration scheme for phase field model for cohesive fracture and its implementation in Abaqus. Engineering Fracture Mechanics, 2018, 204: 268-287 doi: 10.1016/j.engfracmech.2018.10.006
|
[24] |
Mandal TK, Nguyen VP, Heidarpour A. Phase field and gradient enhanced damage models for quasi-brittle failure: A numerical comparative study. Engineering Fracture Mechanics, 2018, 207: 48-67
|
[25] |
Wang Q, Feng YT, Zhou W, et al. A phase-field model for mixed-mode fracture based on a unified tensile fracture criterion. Computer Methods in Applied Mechanics and Engineering, 2020, 370: 113270 doi: 10.1016/j.cma.2020.113270
|
[26] |
Loew PJ, Peters B, Beex LAA. Fatigue phase-field damage modeling of rubber using viscous dissipation: Crack nucleation and propagation. Mechanics of Materials, 2019, 142: 103282
|
[27] |
Marboeuf A, Bennani L, Budinger M, et al. Electromechanical resonant ice protection systems: numerical investigation through a phase-field mixed adhesive/brittle fracture model. Engineering Fracture Mechanics, 2020, 230: 106926 doi: 10.1016/j.engfracmech.2020.106926
|
[28] |
Mandal TK, Nguyen VP, Wu JY. A length scale insensitive anisotropic phase field fracture model for hyperelastic composites. International Journal of Mechanical Sciences, 2020, 188: 105941 doi: 10.1016/j.ijmecsci.2020.105941
|
[29] |
Zhang XC, Shyy W, Sastry AM. Numerical simulation of intercalation-induced stress in Li-ion battery electrode particles. Journal of the Electrochemical Society, 2007, 154(10): A910 doi: 10.1149/1.2759840
|
[30] |
Gao YF, Zhou M. Strong stress-enhanced diffusion in amorphous lithium alloy nanowire electrodes. Journal of Applied Physics, 2011, 109: 014310 doi: 10.1063/1.3530738
|
[31] |
Braides A. Approximation of Free-Discontinuity Problems. Berlin: Springer science & Business Media, 1998
|
[32] |
Miehe C, Welschinger F, Hofacker M. Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field FE implementations. International Journal for Numerical Methods in Engineering, 2010, 83(10): 1273-1311 doi: 10.1002/nme.2861
|
[33] |
Wu JY. On the theoretical and numerical aspects of the unified phase-field theory for damage and failure in solids and structures. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(2): 301-329
|
[34] |
Hai L, Wu JY, Li J. A phase-field damage model with micro inertia effect for the dynamic fracture of quasi-brittle solids. Engineering Fracture Mechanics, 2020, 225: 106821 doi: 10.1016/j.engfracmech.2019.106821
|
[35] |
Wu JY, Qiu JF, Nguyen VP, et al. Computational modeling of localized failure in solids: XFEM vs PF-CZM. Computer Methods in Applied Mechanics and Engineering, 2018, 345: 618-643
|
[36] |
Feng DC, Wu JY. Phase-field regularized cohesive zone model (CZM) and size effect of concrete. Engineering Fracture Mechanics, 2018, 197: 66-79 doi: 10.1016/j.engfracmech.2018.04.038
|
[37] |
Wu JY. Robust numerical implementation of non-standard phase-field damage models for failure in solids. Computer Methods in Applied Mechanics and Engineering, 2018, 340: 767-797 doi: 10.1016/j.cma.2018.06.007
|
[38] |
Mandal TK, Nguyen VP, Wu JY. Comparative study of phase-field damage models for hydrogen assisted cracking. Theoretical and Applied Fracture Mechanics, 2021, 111: 102840 doi: 10.1016/j.tafmec.2020.102840
|
[39] |
Newmark NM. A method of computation for structural dynamics. Journal of Engineering Mechanics, 1956, 85: 67-94
|
[40] |
Hilber HM, Hughes TJR, Talor RL. Improved numerical dissipation for time integration algorithms in structural dynamics. Earthquake Engineering & Structural Dynamics, 1977, 5: 282-292
|
[41] |
Garcia RE, Chiang YM, Carter WC, et al. Microstructural modeling and design of rechargeable lithium. Journal of the Electrochemical Society, 2004, 152(1): A255
|
[42] |
John C, John N. A mathematical model of stress generation and fracture in lithium manganese oxide. Journal of The Electrochemical Society, 2006, 153(6): A1019 doi: 10.1149/1.2185287
|
[43] |
Guo Z, Ji L, Chen L. Analytical solutions and numerical simulations of diffusion-induced stresses and concentration distributions in porous electrodes with particles of different size and shape. Journal of Materials Science, 2017, 52(23): 13606-13625 doi: 10.1007/s10853-017-1455-1
|
[44] |
吴建营, 陈万昕, 黄羽立. 基于统一相场理论的早龄期混凝土化-热-力多场耦合裂缝模拟与抗裂性能预测. 力学学报. 2021, 53(5): 1367-1382
Wu Jianying, Chen Wanxin, Huang Yuli. Computational modeling of shrinkage induced cracking in early-age concrete based on the unified phase-field theory. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(5): 1367-1382 (in Chinese)
|
[45] |
Wu JY, Huang Y, Zhou H, et al. Three-dimensional phase-field modeling of mode I + II/III failure in solids. Computer Methods in Applied Mechanics and Engineering, 2021, 373: 113537 doi: 10.1016/j.cma.2020.113537
|
1. |
孔纯,朱国荣,魏学良,王菁,康健强,王茜. 考虑固相扩散诱导应力的锂离子电池电极颗粒破裂机理研究. 电工技术学报. 2025(05): 1672-1684 .
![]() | |
2. |
魏浩林,吴振,任晓辉. 基于各向异性断裂相场模型的自适应多尺度有限元方法. 力学学报. 2024(10): 2902-2912 .
![]() | |
3. |
张育维,张锴,郑百林. 三元活性颗粒在外部载荷作用下锂化诱导断裂的有限离散元分析. 力学季刊. 2024(04): 993-1005 .
![]() |