Citation: | Liu Pengfei, Yang Shaopu, Liu Yongqiang, Gu Xiaohui, Liu Zechao. Discrete time transfer matrix modeling of flexible wheelset and vertical vibration. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(5): 1375-1386. DOI: 10.6052/0459-1879-22-008 |
[1] |
刘玉涛, 李成辉, 亓伟等. 轮对中高频振动仿真模型. 中国铁道科学, 2016, 37(3): 82-87 (Liu Yutao, Li Chenghui, Qi Wei, et al. Simulation model for medium and high frequency vibration of wheelset. China Railway Science, 2016, 37(3): 82-87 (in Chinese) doi: 10.3969/j.issn.1001-4632.2016.03.012
|
[2] |
杨广雪, 赵方伟, 李秋泽等. 高速列车轮轨接触几何参数对轮轨磨耗的影响研究. 铁道学报, 2019, 41(2): 50-56 (Yang Guangxue, Zhao Fangwei, Li Qiuze, et al. Study of influences of high-speed train wheel-rail contact geometric parameters on wheel-rail wear. Journal of The China Railway Society, 2019, 41(2): 50-56 (in Chinese)
|
[3] |
Peng B, Iwnicki S, Shackleton P, et al. The influence of wheelset flexibility on polygonal wear of locomotive wheels. Wear, 2019, 432-433: 102917 doi: 10.1016/j.wear.2019.05.032
|
[4] |
杨润芝, 曾京. 高阶车轮多边形对轮轨系统振动影响分析. 振动与冲击, 2020, 39(21): 101-110 (Yang Runzhi, Zeng Jing. Influences of higher order wheel polygon on vibration of wheel-rail system. Journal of Vibration and Shock, 2020, 39(21): 101-110 (in Chinese)
|
[5] |
王相平, 王红兵, 贾文慧等. 车轮扁疤对高速车辆动态曲线通过性能的影响. 铁道科学与工程学报, 2020, 17(9): 2198-2207 (Wang Xiangping, Wang Hongbing, Jia Wenhui, et al. The influence of wheel flat on the performance of high-speed vehicle dynamic on railway curve negotiation. Journal of Railway Science and Engineering, 2020, 17(9): 2198-2207 (in Chinese)
|
[6] |
刘国云, 曾京, 邬平波等. 车轮扁疤所引起的车辆系统振动特性分析. 机械工程学报, 2020, 56(8): 182-189 (Liu Guoyun, Zeng Jing, Wu Pingbo, et al. Vibration characteristic analysis of vehicle systems due to wheel flat. Journal of Mechanical Engineering, 2020, 56(8): 182-189 (in Chinese) doi: 10.3901/JME.2020.08.182
|
[7] |
张波, 罗光兵, 蒋忠城等. 柔性结构对车辆运动稳定性的影响. 技术与市场, 2019, 26(6): 5-8 (Zhang Bo, Luo Guangbin, Jiang Zhongchen, et al. The Influence of flexible structure on vehicle dynamic stability. Technology and Market, 2019, 26(6): 5-8 (in Chinese)
|
[8] |
Fourie D, Frӧhling R, Heyns S. Railhead corrugation resulting from mode-coupling instability in the presence of veering modes. Tribology International, 2020, 152: 106499 doi: 10.1016/j.triboint.2020.106499
|
[9] |
郭涛, 侯银庆, 胡晓依等. 钢轨波磨对高速车辆动力学性能的影响. 铁道建筑, 2019, 59(3): 111-115 (Guo Tao, Hou Yinqing, Hu Xiaoyi, et al. Influences of rail corrugations on dynamic performances of high speed vehicles. Railway Engineering, 2019, 59(3): 111-115 (in Chinese)
|
[10] |
沈钢, 杨陈, 王辉. 轨交车辆轮对弹性振动对轴箱轴承寿命的影响. 机电一体化, 2015, 21(4): 67-72 (Shen Gang, Yang Chen, Wang Hui. Effect on the axle box bearing life by the elastic vibration of metro vehicle wheel. Mechatronics, 2015, 21(4): 67-72 (in Chinese)
|
[11] |
Cruceanu IC, Sorohan S. Determination of the harmonic response of a railway wheelset using the finite element analysis method. Procedia Manufacturing, 2020, 46: 173-179 doi: 10.1016/j.promfg.2020.03.026
|
[12] |
Kurzeck B, Hecht M. Dynamic simulation of friction induced vibration in a light railway bogie while curving compared with measurement results. Vehicle System Dynamics, 2009, 72: 949-961
|
[13] |
Guiral A, Alonso A, Giménez JG. Vehicle–track interaction at high frequencies – Modelling of a flexible rotating wheelset in non-inertial reference frames. Journal of Sound and Vibration, 2015, 355: 284-304 doi: 10.1016/j.jsv.2015.06.032
|
[14] |
Baeza L, Giner-Navarro J, Thompson DJ, et al. Eulerian models of the rotating flexible wheelset for high frequency railway dynamics. Journal of Sound and Vibration, 2019, 449(9): 300-314
|
[15] |
徐宁, 任尊松, 马尚. 带集中质量及转动惯量的弹性车轴模型及振动分析. 机械工程学报, 2014, 50(2): 125-131 (Xu Ning, Ren Zunsong, Ma Shang. Vibration analyses of elastic wheelset model with concentrated mass and moment of inertia. Journal of Mechanical Engineering, 2014, 50(2): 125-131 (in Chinese) doi: 10.3901/JME.2014.02.125
|
[16] |
钟硕乔, 金学松. 轮对旋转效应与结构柔性对轮轨力的影响//中国力学大会-2017暨庆祝中国力学学会成立60周年大会论文集, 2017, 10: 1075-1084
Zhong Shuoqiao, Jin Xuesong. Wheelset rotation effect and the influence of structural flexibility on wheel-rail forces//China Mechanics Congress-2017 and the 60th anniversary of the founding of the Chinese Society of Mechanics, 2017: 10: 1075-1084 (in Chinese)
|
[17] |
崔潇, 姚建伟, 胡晓依等. 欧拉坐标系下柔性轮对旋转效应对轮轨力的影响. 中国铁道科学, 2019, 40(4): 120-128 (Cui Xiao, Yao Jianwei, Hu Xiaoyi, et al. Rotation effect of flexible wheelset on wheel-rail force in Euler coordinate system. China Railway Science, 2019, 40(4): 120-128 (in Chinese) doi: 10.3969/j.issn.1001-4632.2019.04.15
|
[18] |
杨云帆, 周青, 巩磊等. 轮对柔性对直线电机车辆动态响应的影响分析. 西南交通大学学报, 2020, 55(6): 1313-1319 (Yang Yunfan, Zhou Qing, Gong Lei, et al. Influence of wheelset flexibility on dynamic response of linear induction motor vehicles. Journal of Southwest Jiaotong University, 2020, 55(6): 1313-1319 (in Chinese)
|
[19] |
Rui XT, Wang GP, Zhang JS. Transfer Matrix Method for Multibody Systems: Theory and Applications. Hoboken: Wiley, 2018.
|
[20] |
顾致平, 刘永寿. 非线性转子系统中的传递矩阵技术. 北京: 科学出版社, 2010
Gu Zhiping, Liu Yongshou. Transfer Matrix Technique in Nonlinear Rotor Systems. Beijing: Science Press, 2010(in Chinese))
|
[21] |
毛文贵, 韩旭, 刘桂萍. 滑动轴承-转子系统Riccati-Newmark加速度传递矩阵法. 振动与冲击, 2015(20): 80-84 (Mao Wengui, Han Xu, Liu Guiping. Riccati transfer matrix method combined with Newmark acceleration formulation integration for analysing sliding bearings and rotor system. Journal of Vibration and Shock, 2015(20): 80-84 (in Chinese)
|
[22] |
顾致平, 孟光, 支希哲. 柔性转子-支承系统瞬态响应分析的模态叠加-Riccati传递矩阵法. 振动工程学报, 1995, 8(2): 178-183 (Gu Zhiping, Meng Guang, Zhi Xizhe. Mode Superposition-Riccati transfer matrix method for transient analysis of flexible rotor-bearing systems. Journal of Vibration Engineering, 1995, 8(2): 178-183 (in Chinese)
|
[23] |
Zhai WM. Vehicle-Track Coupled Dynamics: Theory and applications. Berlin: Springer, 2020.
|
[24] |
Liu PF, Zhai WM, Wang KY. Establishment and verification of three dimensional dynamic model for heavy haul train track coupled system. Vehicle System Dynamics, 2016, 54(11): 1511-1537 doi: 10.1080/00423114.2016.1213862
|
[25] |
Liu PF, Zhang KL, Cao YQ. Dynamic performance of six-axle locomotive subjected to asymmetric brake shoe forces. Journal of Central South University, 2020, 27(9): 2776-2791 doi: 10.1007/s11771-020-4498-4
|
[26] |
Liu PF, Wei K, Wang KY, et al. Testing of modified primary stiffness for heavy-haul locomotives operating on sharper-radius curves. Proceedings of the Institution of Mechanical Engineers, Part K:Journal of Multi-body Dynamics, 2019, 233(3): 531-548 doi: 10.1177/1464419319836006
|
[27] |
张卫华. 机车车辆动态模拟. 北京: 中国铁道出版社. 2006
Zhang Weihua. Dynamic Simulation of Railway Vehicles. Beijing: China Railway Publishing House, 2006 (in Chinese)
|
[28] |
向琴. 高速列车滚动轴承支承松动建模及其非线性动力学特性研究[硕士论文]. 南昌: 华东交通大学, 2015
Xiang Qin. Study on modelling and nonlinear dynamic characteristics of high-speed train rolling bearing with pedestal looseness[Master Thesis]. Nanchang: East China Jiaotong University, 2015(in Chinese))
|
[29] |
CY-SJZ-JT-009. 滚振试验台计算分析报告书. 石家庄铁道大学, 2017
|
[30] |
Liu PF, Liu HJ, Wu Q. Estimation of wheelset natural vibration characteristics based on transfer matrix method with various elastic beam models. Shock and Vibration, 2021: 9973421
|
[31] |
朱海燕, 胡华涛, 尹必超等. 轨道车辆车轮多边形研究进展. 交通运输工程学报, 2020, 20(1): 102-119 (Zhu Haiyan, Hu Huatao, Yin Bichao, et al. Research progress on wheel polygons of rail vehicles. Journal of Traffic and Transportation Engineering, 2020, 20(1): 102-119 (in Chinese)
|
[1] | Luo Shichao, Zhang Zhigang, Liu Jun, Gong Hongming, Hu Shouchao, Wu Liyin, Chang Yu, Zhuang Yu, Li Xian, Huang Chengyang. PROGRESS IN THE HIGH TEMPERATURE THERMOCHEMICAL NON-EQUILIBRIUM AEROTHERMAL TEST AND SIMULATION TECHNOLOGY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(11): 2439-2452. DOI: 10.6052/0459-1879-23-196 |
[2] | Yuan Tingting, Ren Kunming, Fang Yuqiao, Liu Jinyang. DYNAMIC MODELING AND ANALYSIS FOR NON-RIGID ORIGAMI STRUCTURE CONSIDERING NONLINEAR CONSTITUTIVE RELATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(9): 2552-2566. DOI: 10.6052/0459-1879-22-176 |
[3] | Qing Li, Likun Xing, Jiang Bai, Yuanjie Zou. METHOD STUDY ON RESPONSE PREDICTION OF STRUCTURAL VIBRATIONS IN SPACECRAFT ACOUSTIC TESTS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 569-576. DOI: 10.6052/0459-1879-18-337 |
[4] | Song Wei, Lu Wei, Jiang Zenghui, Bai Peng. THE CRUCIAL TECHNIQUE INVESTIGATION OF WIND-TUNNEL DROP-MODEL TESTING FOR THE SUPERSONIC INTERNAL WEAPONS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(6): 1346-1355. DOI: 10.6052/0459-1879-18-180 |
[5] | Li Guoqiang, Zhang Weiguo, Chen Li, Nie Bowen, Zhang Peng, Yue Tingrui. RESEARCH ON DYNAMIC TEST TECHNOLOGY FOR WIND TURBINE BLADE AIRFOIL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(4): 751-765. DOI: 10.6052/0459-1879-18-108 |
[6] | Liu Liqin, Guo Ying, Zhao Haixiang, Tang Yougang. DYNAMIC MODELING, SIMULATION AND MODEL TESTS RESEARCH ON THE FLOATING VAWT[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(2): 299-307. DOI: 10.6052/0459-1879-16-264 |
[7] | Wang Yunpeng, Liu Yunfeng, Yuan Chaokai, Luo Changtong, Wang Chun, Hu Zongmin, Han Guilai, Zhao Wei, Jiang Zonglin. STUDY ON FORCE MEASUREMENT IN LONG-TEST DURATION SHOCK TUNNEL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 545-556. DOI: 10.6052/0459-1879-15-295 |
[8] | Wu Dafang, Zhao Shougen, Pan Bing, Wang Yuewu, Wang Jie, Mu Meng, Zhu Lin. EXPERIMENTAL STUDY ON HIGH TEMPERATURE THERMAL-VIBRATION CHARACTERISTICS FOR HOLLOW WING STRUCTURE OF HIGH-SPEED FLIGHT VEHICLES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(4): 598-605. DOI: 10.6052/0459-1879-12-360 |
[9] | THE TESTING RESEARCH FOR OPTIMIZING THE DESIGN OF TRANSONIC ADAPTIVE TEST SECTION[J]. Chinese Journal of Theoretical and Applied Mechanics, 1995, 27(S): 103-108. DOI: 10.6052/0459-1879-1995-S-1995-510 |
[10] | THE SIMPLIFIED DYNAMIC SYSTEM ANALYSIS OF THE PENDULUM IMPACT TENSILE TEST APPARATUS OF BLOCK-BAR[J]. Chinese Journal of Theoretical and Applied Mechanics, 1991, 23(2): 217-224. DOI: 10.6052/0459-1879-1991-2-1995-829 |