Citation: | Yan Chenyi, Chen Ying. Numerical investigation on the water-entry cavity feature and flow structure of a spinning sphere based on large-eddy simulation. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(4): 1012-1025. DOI: 10.6052/0459-1879-21-634 |
[1] |
Shi Y, Pan G, Yan GX, et al. Numerical study on the cavity characteristics and impact loads of auv water entry. Applied Ocean Research, 2019, 89: 44-58 doi: 10.1016/j.apor.2019.05.012
|
[2] |
Xie H, Liu F, Tang H, et al. Numerical study on the dynamic response of a truncated ship-hull structure under asymmetrical slamming. Marine Structures, 2020, 72: 102767
|
[3] |
Aristiff I , Grizzi S. Cavitation and ventilation modalities during ditching. Physics of Fluids, 2019, 31(5): 052101
|
[4] |
Louf JF, Chang B, Eshraghi J, et al. Cavity ripple dynamics after pinch-off. Journal of Fluid Mechanics, 2018, 850: 611-623 doi: 10.1017/jfm.2018.459
|
[5] |
Yang C, Zhang HX. Improved moving particle semi-implicit method with large eddy simulation for determining water-entry impact and damage to flat-bottomed structures. Journal of Ship Mechanics, 2019, 23(9): 1070-1085
|
[6] |
路中磊, 孙铁志, 魏英杰等. 开放空腔壳体倾斜入水运动特性试验研究. 力学学报, 2018, 50(2): 263-273 (Lu Zhonglei, Sun Tiezhi, Wei Yingjie, et al. Experimental investigation on the motion feature of inclined water-entry of a semi-closed cylinder. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 263-273 (in Chinese) doi: 10.6052/0459-1879-17-191
|
[7] |
黄超, 翁翕, 刘谋斌. 超疏水小球低速入水空泡研究. 力学学报, 2019, 51(1): 36-45 (Huang Chao, Wen Xi, Liu Moubin. Study on low-speed water entry of super-hydrophobic small spheres. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(1): 36-45 (in Chinese) doi: 10.6052/0459-1879-18-310
|
[8] |
Truscott TT, Techet AH. Water entry of spinning spheres. Journal of Fluid Mechanics, 2009, 625: 135-165 doi: 10.1017/S0022112008005533
|
[9] |
卢佳兴, 魏英杰, 王聪等. 圆柱体并联入水过程空泡演化特性实验研究. 力学学报, 2019, 51(2): 450-461 (Lu Jiaxing, Wei Yingjie, Wang Cong, et al. Experimental study on cavity evolution characteristics in the water-entry process of parallel cylinders. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 450-461 (in Chinese) doi: 10.6052/0459-1879-18-288
|
[10] |
Von Karman T. The Impact on Seaplane Floats During Landing, Washington DC: National Advisory Committee for Aeronautics, 1929: 1-8
|
[11] |
Watanabe S. Resistance of impact on water surface, part V-sphere. Institute of Physical and Chemical Research, 1930, 23(484): 202-208
|
[12] |
Worthington AM, Cole RSV. Impact with a liquid surface, studied by the aid of instantaneous photography. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 1897, 189: 137-148
|
[13] |
Techet AH, Truscott TT. Water entry of spinning hydrophobic and hydrophilic spheres. Journal of Fluids and Structures, 2011, 27(5-6): 716-726 doi: 10.1016/j.jfluidstructs.2011.03.014
|
[14] |
Truscott TT, Techet AH. A spin on cavity formation during water entry of hydrophobic and hydrophilic spheres. Physics of Fluids, 2009, 21(12): 121703
|
[15] |
Li D, Zhao X, Kong D, et al. Numerical investigation of the water entry of a hydrophobic sphere with spin. International Journal of Multiphase Flow, 2020, 126: 103234 doi: 10.1016/j.ijmultiphaseflow.2020.103234
|
[16] |
Molteni D, Colagrossi A. A simple procedure to improve the pressure evaluation in hydrodynamic context using the SPH. Computer Physics Communications, 2009, 180(6): 861-872 doi: 10.1016/j.cpc.2008.12.004
|
[17] |
Adami S, Hu XY, Adams NA. A generalized wall boundary condition for smoothed particle hydrodynamics. Journal of Computational Physics, 2012, 231(21): 7057-7075 doi: 10.1016/j.jcp.2012.05.005
|
[18] |
Fourtakas G, Jose MD, Vacondio R, et al. Local uniform stencil (lust) boundary condition for arbitrary 3-D boundaries in parallel smoothed particle hydrodynamics (SPH) models. Computers & Fluids, 2019, 190: 346-361
|
[19] |
Yu P, Shen C, Zhen C, et al. Parametric study on the free-fall water entry of a sphere by using the rans method. Journal of Marine Science and Engineering, 2019, 7(5): 122
|
[20] |
周波, 刘辉, 王杰等. 旋转球倾斜入水空泡演变和运动特性数值模拟. 华中科技大学学报(自然科学版), 2020, 48(10): 92-98 (Zhou Bo, Liu hui, Wang Jie, et al. Numerical simulation on cavity evolution and motion characteristics for oblique water entry of a rotation sphere. Journal of Huazhong Universiy of Science and Technology (Natural Sciences Edition)
|
[21] |
Li C, Wang C, Wei Y, et al. Three-dimensional numerical simulation of cavity dynamics of a stone with different spinning velocities. International Journal of Multiphase Flow, 2020, 129: 103339
|
[22] |
Zhou H, Sun T, Quan X, et al. Large eddy simulation and experimental investigation on the cavity dynamics and vortex evolution for oblique water entry of a cylinder. Applied Ocean Research, 2018, 81: 76-92 doi: 10.1016/j.apor.2018.10.008
|
[23] |
Hinze JO. Turbulence. 2nd ed. New York: McGraw-Hill, 1975: 92-96
|
[24] |
Erlebacher G, Hussaini MY, Speziale CG, et al. Toward the large-eddy simulation of compressible turbulent flows. Journal of Fluid Mechanics, 1992, 238: 155-185 doi: 10.1017/S0022112092001678
|
[25] |
Nicoud F, Ducros F. Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow Turbulence and Combustion, 1999, 62(3): 183-200 doi: 10.1023/A:1009995426001
|
[26] |
Smagorinsky J. General circulation experiments with the primitive equations I. The basic experiment. Mon. Weather Rev., 1963, 91: 99-164 doi: 10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
|
[27] |
Duez C, Ybert C, Clanet C, et al. Making a splash with water repellency. Nature Physics, 2007, 3(3): 180-183 doi: 10.1038/nphys545
|
[28] |
Brackbill JU, Kothe DB, Zemach C. A continuum method for modeling surface tension. Journal of Computational Physics, 1992, 100(2): 335-354 doi: 10.1016/0021-9991(92)90240-Y
|
[29] |
Leonard BP. The ultimate conservative difference scheme applied to unsteady one-dimensional advection. Computer Methods in Applied Mechanics and Engineering, 1991, 88(1): 17-74 doi: 10.1016/0045-7825(91)90232-U
|
[30] |
Muzaferija S, Peric M, Sames P, et al. A two-fluid navier-stokes solver to simulate water entry//Proc. 22nd Symposium on Naval Hydrodynamics, Washington, 1998: 277–289
|
[31] |
Benard P, Balarac G, Moureau V, et al. Mesh adaptation for large-eddy simulations in complex geometries. International Journal for Numerical Methods in Fluids, 2016, 81(12): 719-740 doi: 10.1002/fld.4204
|
[32] |
Lesieur M. Turbulence in Fluids: Fourth Revised and Enlarged, Edition 4. Dordrecht: Springer Netherlands, 2008: 197-199
|
[33] |
Batchelor G K. Pressure fluctuations in isotropic turbulence. Math. Proc. Camb. Phil. Soc. 1951, 47(2): 359-374.
|
[34] |
Mansoor MM, Vakarelski IU, Marston JO, et al. Stable-streamlined and helical cavities following the impact of leidenfrost spheres. Journal of Fluid Mechanics, 2017, 823: 716-754 doi: 10.1017/jfm.2017.337
|
[35] |
Hunt JCR, Wray AA, Moin P. Eddies, stream, and convergence zones in turbulent flows. in: Studying Turbulence Using Numerical Simulation Databases-II, Center for Turbulence Research 2, 1988: 193-208
|
1. |
赵一飞,刘浪. 广义概率密度演化方程差分解法的计算精度比较与改进. 南昌大学学报(工科版). 2025(01): 38-43+48 .
![]() | |
2. |
周永峰,李杰. 含多维随机变量的广义概率密度演化方程解析解:以Euler-Bernoulli梁为例. 力学学报. 2024(09): 2659-2668 .
![]() | |
3. |
刘纲,唐伟,高凯. 基于概率密度演化的斜拉索多级变幅时变疲劳可靠度分析. 铁道科学与工程学报. 2022(01): 191-197 .
![]() | |
4. |
朱志辉,刘禹兵,高雪萌,周高扬,余志武. 概率密度演化方程差分格式的计算精度及初值条件改进. 工程力学. 2022(11): 13-21 .
![]() | |
5. |
黄斌,贺志赟,张衡. 随机桁架结构几何非线性问题的混合摄动-伽辽金法求解. 力学学报. 2019(05): 1424-1436 .
![]() |