EI、Scopus 收录
中文核心期刊
Liu Fengyin, Jiang Jingxi, Li Dongdong. Study on the evolution of liquid bridge force between flaky particles. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(6): 1660-1668. DOI: 10.6052/0459-1879-21-628
Citation: Liu Fengyin, Jiang Jingxi, Li Dongdong. Study on the evolution of liquid bridge force between flaky particles. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(6): 1660-1668. DOI: 10.6052/0459-1879-21-628

STUDY ON THE EVOLUTION OF LIQUID BRIDGE FORCE BETWEEN FLAKY PARTICLES

  • Received Date: November 28, 2021
  • Accepted Date: April 13, 2022
  • Available Online: April 14, 2022
  • Studying the liquid bridging force between particles can help reveal the internal mechanism of the water-holding properties of unsaturated soils. In order to explore the evolution law of the liquid bridge force between flaky particles and study the hydraulic characteristics of unsaturated soils from a meso-scale scale, the Surface Evolver software was used to construct a three-dimensional liquid bridge model between two parallel flaky particles, and the tension of the liquid bridge was analyzed. The influence of contact angle, liquid bridge volume, separation distance and the pinning effect of the solid-liquid contact line on the law of the change of the liquid bridge force during the process. Based on the arc assumption, calculate the liquid bridge force and the size of the contact radius under the corresponding conditions, and compare and analyze the results with the above simulation results. The results show that the liquid bridge force between flake particles increases with the increase of the liquid bridge volume, decreases with the increase of the separation distance, and first increases and then decreases or decreases with the increase of the solid-liquid contact angle; when the liquid bridge volume is constant In the pinning state, the force first increases rapidly with the increase of the separation distance, reaches the peak value, and then gradually decreases; the Surface Evolver simulation is compared with the calculation result of the annular approximation of the liquid bridge interface, when the solid-liquid contact angle is large (θ = 60° and θ = 80°), the relative error of the two is within 6%, and when the solid-liquid contact angle is reduced to 30° and below, the relative error increases, and the particles The greater the separation distance, the greater the relative error.
  • [1]
    卢宁, William JL. 非饱和土力学. 韦昌富译. 北京: 高等教育出版社, 2012

    (Lu Ning, William JL. Soil Mechanics for Unsaturated Soils. Wei Changfu trans. Beijing: Higher Education Press, 2012 (in Chinese)
    [2]
    Fredlund DG, Rahardjo H. Soil Mechanics for Unsaturated Soils. John Wiley & Sons, 1993
    [3]
    陈正汉. 重塑非饱和黄土的变形、强度、屈服和水量变化特性. 岩土工程报, 1999, 21(1): 82-90 (Chen Zhenghan. Deformation, strength, yield and water change characteristics of reshaped unsaturated loess. Chinese Journal of Geotechnical Engineering, 1999, 21(1): 82-90 (in Chinese)

    Chen Zhenghan. Deformation, strength, yield and water change characteristics of reshaped unsaturated loess. Chinese Journal of Geotechnical Engineering, 1999, 21(01): 82-90(in Chinese)
    [4]
    黎澄生, 孔令伟, 柏巍等. 土-水特征曲线滞后阻塞模型. 岩土力学, 2018, 39(2): 598-604 (Li Chengsheng, Kong Lingwei, Bai Wei, et al. Hysteresis blocking model of soil-water characteristic curve. Rock Mechanics, 2018, 39(2): 598-604 (in Chinese)

    Li Chengsheng, Kong Lingwei, Bai Wei, et al. Hysteresis blocking model of soil-water characteristic curve. Rock Mechanics, 2018, 39(2): 598-604(in Chinese)
    [5]
    栾茂田, 李顺群, 杨庆. 非饱和土的理论土-水特征曲线. 岩土工程学报, 2005, 27(6): 611-615 (Luan Maotian, Li Shunqun, Yang Qing. Theoretical soil-water characteristic curve of unsaturated soil. Journal of Geotechnical Engineering, 2005, 27(6): 611-615 (in Chinese) doi: 10.3321/j.issn:1000-4548.2005.06.001

    Luan Maotian, Li Shunqun, Yang Qing. Theoretical soil-water characteristic curve of unsaturated soil. Journal of Geotechnical Engineering, 2005, 27(06): 611-615(in Chinese) doi: 10.3321/j.issn:1000-4548.2005.06.001
    [6]
    刘艳, 赵成刚. 土水特征曲线滞后模型的研究. 岩土工程学报, 2008, 30(3): 399-405 (Liu Yan, Zhao Chenggang. Research on hysteresis model of soil-water characteristic curve. Journal of Geotechnical Engineering, 2008, 30(3): 399-405 (in Chinese) doi: 10.3321/j.issn:1000-4548.2008.03.016

    Liu Yan, Zhao Chenggang. Research on hysteresis model of soil-water characteristic curve. Journal of Geotechnical Engineering, 2008, 30(03): 399-405(in Chinese) doi: 10.3321/j.issn:1000-4548.2008.03.016
    [7]
    贺炜, 赵明华, 陈永贵等. 土-水特征曲线滞后现象的微观机制与计算分析. 岩土力学, 2010, 31(4): 1078-1083 (He Wei, Zhao Minghua, Chen Yonggui, et al. Microscopic mechanism and calculation analysis of hysteresis of soil-water characteristic curve. Rock Mechanics, 2010, 31(4): 1078-1083 (in Chinese) doi: 10.3969/j.issn.1000-7598.2010.04.012

    He Wei, Zhao Minghua, Chen Yonggui, et al. Microscopic mechanism and calculation analysis of hysteresis of soil-water characteristic curve. Rock Mechanics, 2010, 31(04): 1078-1083(in Chinese) doi: 10.3969/j.issn.1000-7598.2010.04.012
    [8]
    张昭, 刘奉银, 赵旭光等. 考虑应力引起孔隙比变化的土水特征曲线模型. 水利学报, 2013, 44(5): 578-585 (Zhang Zhao, Liu Fengyin, Zhao Xuguang, et al. Soil-water characteristic curve model considering the change of void ratio caused by stress. Journal of Hydraulic Engineering, 2013, 44(5): 578-585 (in Chinese) doi: 10.3969/j.issn.0559-9350.2013.05.013

    Zhang Zhao, Liu Fengyin, Zhao Xuguang, et al. Soil-water characteristic curve model considering the change of void ratio caused by stress. Journal of Hydraulic Engineering, 2013, 44(5): 578-585(in Chinese) doi: 10.3969/j.issn.0559-9350.2013.05.013
    [9]
    张鹏程, 汤连生, 姜力群等. 基质吸力与含水率及干密度定量关系研究. 岩石力学与工程学报, 2013, 32(S1): 2792-2797 (Zhang Pengcheng, Tang Liansheng, Jiang Liqundeng, et al. A study on the quantitative relationship between matrix suction, moisture content and dry density. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(S1): 2792-2797 (in Chinese)

    Zhang Pengcheng, Tang Liansheng, Jiang Liqundeng, et al. A Study on the quantitative relationship between matrix suction, moisture content and dry density. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(S1): 2792-2797(in Chinese)
    [10]
    孙德安, 高游. 不同制样方法非饱和土的持水特性研究. 岩土工程学报, 2015, 37(1): 91-97 (Sun Dean, Gao You. Research on water holding characteristics of unsaturated soil with different sample preparation methods. Journal of Geotechnical Engineering, 2015, 37(1): 91-97 (in Chinese)

    Sun Dean, Gao You. Research on Water Holding Characteristics of Unsaturated Soil with Different Sample Preparation Methods. Journal of Geotechnical Engineering, 2015, 37(01): 91-97(in Chinese)
    [11]
    蔡国庆, 盛岱超, 周安楠. 考虑初始孔隙比影响的非饱和土相对渗透系数方程. 岩土工程学报, 2014, 36(5): 827-835 (Cai Guoqing, Cheng Daichao, Zhou Annan. Equation of relative permeability coefficient of unsaturated soil considering the influence of initial porosity ratio. Journal of Geotechnical Engineering, 2014, 36(5): 827-835 (in Chinese)

    Cai Guoqing, Cheng Daichao, Zhou Annan. Equation of Relative Permeability Coefficient of Unsaturated Soil Considering the Influence of Initial Porosity Ratio. Journal of Geotechnical Engineering, 2014, 36(05): 827-835(in Chinese)
    [12]
    Lambert P, Chau A, Delchambre A, et al. Comparison between two capillary forces models. Langmuir, 2008, 24(7): 3157-3163 doi: 10.1021/la7036444
    [13]
    Megias-Alguacil D, Gauckler LJ. Accuracy of the toroidal approximation for the calculus of concave and convex liquid bridges between particles. Granular Matter, 2011, 13(4): 487-492 doi: 10.1007/s10035-011-0260-9
    [14]
    Pepin X, Rossetti D, Iveson SM, et al. Modeling the evolution and rupture of pendular liquid bridges in the presence of large wetting hysteresis. Journal of Colloid & Interface Science, 2000, 232(2): 289-297
    [15]
    Fisher RA. On the capillary forces in an ideal soil correction of formulae given by W.B. Haines. The Journal of Agricultural Science, 1926, 16(3): 492-505 doi: 10.1017/S0021859600007838
    [16]
    Lian G, Thornton C, Adams MJ. A theoretical study of the liquid bridge forces between two rigid spherical bodies. Journal of Colloid & Interface Science, 1993, 161(1): 138-147
    [17]
    Orr FM, Scriven LE, Rivas AP. Pendular rings between solids: meniscus properties and capillary force. Journal of Fluid Mechanics, 1975, 67(4): 723-742 doi: 10.1017/S0022112075000572
    [18]
    Nguyen HNG, Millet O, Gagneux G. On the capillary bridge between spherical particles of unequal size: analytical and experimental approaches. Continuum Mechanics & Thermodynamics, 2019, 31(1): 225-237
    [19]
    Lambert P, Delchambre A. Parameters ruling capillary forces at the submillimetric scale. Langmuir, 2005, 21(21): 9537-9543 doi: 10.1021/la0507131
    [20]
    Willett CD, Adams MJ, Johnson SA, et al. Capillary bridges between two spherical bodies. Langmuir, 2000, 16(24): 9396-9405 doi: 10.1021/la000657y
    [21]
    Rossetti D, Pepin X, Simons SJR. Rupture energy and wetting behaviour of pendular liquid bridges in relation to the spherical agglomeration process. Journal of Colloid & Interface Science, 2003, 261(1): 161-169
    [22]
    Lievano D, Velankar S, McCarthy JJ. The rupture force of liquid bridges in two and three particle systems. Powder Technology, 2017, 313(2): 18-26
    [23]
    Wang JP, Gallo E, Franois B, et al. Capillary force and rupture of funicular liquid bridges between three spherical bodies. Powder Technology, 2016, 305(6): 89-98
    [24]
    Sprakel J, Besseling NAM, Cohen Stuart MA, et al. Capillary adhesion in the limit of saturation: Thermodynamics, self-consistent field modeling and experiment. Langmuir, 2008, 24(4): 1308-1317 doi: 10.1021/la702222f
    [25]
    庄大伟, 杨艺菲, 胡海涛等. 竖直平板间液桥形状的观测与预测模型开发. 化工学报, 2016, 67(6): 2224-2229 (Zhuang Dawei, Yang Yifei, Hu Haitao, et al. Visualization and prediction model on shape of liquid bridge. CIESC Journal, 2016, 67(6): 2224-2229 (in Chinese)

    Zhuang Dawei, Yang Yifei, Hu Haitao, et al. Visualization and prediction model on shape of liquid bridge. CIESC Journal, 2016, 67(6): 2224-2229 (in Chinese)
    [26]
    朱朝飞, 贾建援, 付红志等. 狭长平行板间液桥形态及受力研究. 工程力学, 2016, 33(6): 222-229 (Zhu Zhaofei, Jia Jianyuan, Fu Hongzhi, et al. A Study of shape and forces of liquid bridge between two slender parallel flat plates. Engineering Mechanics, 2016, 33(6): 222-229 (in Chinese)

    Zhu Zhaofei, Jia Jianyuan, Fu Hongzhi, et al. A Study of shape and forces of liquid bridge between two slender parallel flat plates. Engineering Mechanics, 2016, 33(6): 222-229 (in Chinese)
    [27]
    王学卫, 于洋. 重力影响下板间液桥断裂距离研究. 实验力学, 2012, 27(1): 70-76 (Wang Xuewei, Yu Yang. Study of gravitation effect on rupture distance of liquid bridge between two flat substrates. Journal of Experimental Mechanics, 2012, 27(1): 70-76 (in Chinese)

    Wang Xuewei, Yu Yang. Study of gravitation effect on rupture distance of liquid bridge between two flat substrates. Journal of Experimental Mechanics, 2012, 27(1): 70-76 (in Chinese)
    [28]
    于洋, 王学卫, 吴群. 基于Surface Evolver模拟液桥断裂距离. 医用生物力学, 2011, 26(5): 436-440

    Yu Yang, Wang Xuewei, Wu Qun. Simulation of liquid bridge fracture distance based on Surface Evolver. Journal of Medical Biomechanics. 2011, 26(5): 436-440 (in Chinese)
    [29]
    Brakke KA. The Surface Evolver. Experimental Mathematics, 1992, 1(2): 141-165 doi: 10.1080/10586458.1992.10504253
    [30]
    Brakke KA. The surface evolver and the stability of liquid surfaces. Philosophical Transactions Mathematical Physical & Engineering Sciences, 1996, 354(1715): 2143-2157
    [31]
    Fisher LR, Israelachvili JN. Experimental studies on the applicability of the Kelvin equation to highly curved concave menisci. Journal of Colloid & Interface Science, 1981, 80(2): 528-541
    [32]
    Gagneux G, Millet O. Analytic calculation of capillary bridge properties deduced as an inverse problem from experimental data. Transport in Porous Media, 2014, 105(1): 117-139 doi: 10.1007/s11242-014-0363-y
    [33]
    卢珍萍. 固体表面上液滴外观形貌的研究. [硕士学位论文]. 北京: 北京理工大学, 2016

    Lu Zhenping. A study on appearance and morphology of liquid drops on solid surface. Beijing: Beijing Institute of Technology, 2016 (in Chinese)
    [34]
    Tadrist L, Motte L, Rahli O, et al. Characterization of interface properties of fluids by evaporation of a capillary bridge. Royal Society Open Science, 2019, 6(12): 191608 doi: 10.1098/rsos.191608
    [35]
    Nguyen HNG, Zhao CF, Millet O, et al. Effects of surface roughness on liquid bridge capillarity and droplet wetting. Powder Technology, 2021, 378: 487-496 doi: 10.1016/j.powtec.2020.10.016
    [36]
    Anandarajah A, Amarasinghe PM. Microstructural investigation of soil suction and hysteresis of fine-grained soils. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138(1): 38-46 doi: 10.1061/(ASCE)GT.1943-5606.0000555
    [37]
    Guan GS, Rahardjo H, Choon LE. Shear strength equations for unsaturated soil under drying and wetting. Journal of Geotechnical & Geoenvironmental Engineering, 2010, 136(4): 594-606
    [38]
    Souza EJD, Gao LC, McCarthy TJ, et al. Effect of contact angle hysteresis on the measurement of capillary forces. Langmuir the Acs Journal of Surfaces & Colloids, 2008, 24(4): 1391-1396
    [39]
    Shi Z, Zhang Y, Liu M, et al. Dynamic contact angle hysteresis in liquid bridges. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2018, 555: 365-371
    [40]
    Neumann WA, David R, Zuo Y. Applied Surface Thermodynamics. Boca Raton, London: CRC Press, Taylor & Francis Group, 2011
  • Related Articles

    [1]Jin Yupeng, Xiao Mingkun, Qiu Yi’nan, Wang Tianxiang, Yang Guang, Huang Yonghua, Wu Jingyi. INVESTIGATION ON FLUID DYNAMICS IN A CAPILLARY TUBE UNDER MICROGRAVITY BASED ON THE MAGNETIC COMPENSATION EXPERIMENT[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(12): 3408-3417. DOI: 10.6052/0459-1879-22-346
    [2]Shi Liwei, Ma Qiang, Shu Jinhui. DYNAMIC RESPONSES OF GRADED NON-HOMOGENEOUS UNSATURATED SOILS UNDER A STRIP LOAD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(7): 2008-2018. DOI: 10.6052/0459-1879-21-612
    [3]Di Honggui, Guo Huiji, Zhou Shunhua, Wang Binglong, He Chao. MULTI COUPLING PERIODIC FINITE ELEMENT METHOD FOR CALCULATING THE DYNAMIC RESPONSE OF UNSATURATED SOIL-STRUCTURE SYSTEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(1): 163-172. DOI: 10.6052/0459-1879-21-367
    [4]Pu Cheng, Liu Fengyin, Wang Shaohan, Zhong Lijia. THE FORCE PARAMETER AND PROFILE CHANGE OF LIQUID BRIDGE BETWEEN TWO UNEQUAL SPHERES—AN EXPERIMENT STUDY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(7): 2090-2100. DOI: 10.6052/0459-1879-21-019
    [5]Zhou Fengxi, Mu Zhanlin, Yang Ruxian, Zhang Yasen. ANALYTICAL ANALYSIS ON THE EXPANSION OF CYLINDRICAL CAVITY IN UNSATURATED SOILS UNDER DIFFERENT DRAINAGE CONDITIONS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(5): 1496-1509. DOI: 10.6052/0459-1879-20-439
    [6]Guo Huiji, Di Honggui, Zhou Shunhua, He Chao, Zhang Xiaohui. WAVE FUNCTIONS METHOD FOR CALCULATING THE DYNAMIC RESPONSE OF A TUNNEL IN UNSATURATED SOIL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 591-602. DOI: 10.6052/0459-1879-19-280
    [7]Wei Zheng, Sun Yan, Wang Zairan, Wang Kejian, Xu Xianghong. ENERGY DISSIPATION IN TAPPING MODE ATOMIC FORCE MICROSCOPY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(6): 1301-1311. DOI: 10.6052/0459-1879-17-223
    [8]Guo Pengfei, Zhou Shunhua, Yang Longcai, Xiao Junhua. ANALYTICAL SOLUTION OF THE VERTICAL DYNAMIC RESPONSE OF ROCK-SOCKED PILE CONSIDERING TRANSVERSE INERTIAL EFFECT IN UNSATURATED SOIL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(2): 344-358. DOI: 10.6052/0459-1879-16-286
    [9]Liu Yan, Zhao Chenggang, Li Jian, Cai Guoqing. THE INFLUENCE OF INTERFACES ON THE STRESS STATE IN UNSATURATED SOILS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(2): 335-343. DOI: 10.6052/0459-1879-16-190
    [10]Ma Xiaolin, Xu Jinliang, Xie Jian, Xing Feng, Cheng Yongpan. MODEL RESEARCH ON MECHANISM OF MODULATED FLOW PATTERNS FOR VERTICAL UPFLOW[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(1): 61-70. DOI: 10.6052/0459-1879-14-218
  • Cited by

    Periodical cited type(9)

    1. 苑光耀,王俊淞,赵玄烈,耿敬. 基于PINN的二维剪切流圆柱绕流场重构. 力学学报. 2025(02): 436-452 . 本站查看
    2. 韦昌,樊昱晨,周永清,刘欣,李驰,王赫阳. 基于时间权重的物理信息神经网络求解非稳态偏微分方程. 力学学报. 2025(03): 755-766 . 本站查看
    3. 郭远,傅卓佳,闵建,刘肖廷,赵海涛. 课程-迁移学习物理信息神经网络用于长时间非线性波传播模拟. 力学学报. 2024(03): 763-773 . 本站查看
    4. 赵铎阳,曾森. 基于循环神经网络的结构动力学求解方法探究. 低温建筑技术. 2024(05): 69-73 .
    5. 潘小果,王凯,邓维鑫. 基于NTK理论和改进时间因果的物理信息神经网络加速收敛算法. 力学学报. 2024(07): 1943-1958 . 本站查看
    6. 韦昌,樊昱晨,周永清,张超群,刘欣,王赫阳. 基于Runge-Kutta的自回归物理信息神经网络求解偏微分方程. 力学学报. 2024(08): 2482-2493 . 本站查看
    7. 张凌海,周彬,罗毅,冯俊. 物理信息神经网络的一种自适应配置点算法. 力学学报. 2024(10): 3069-3083 . 本站查看
    8. 石剑波. 智能制造系统中设备故障诊断与预测技术研究. 今日制造与升级. 2024(10): 26-28 .
    9. 韦昌,樊昱晨,周永清,刘欣,张超群,王赫阳. 基于龙格库塔法的多输出物理信息神经网络模型. 力学学报. 2023(10): 2405-2416 . 本站查看

    Other cited types(4)

Catalog

    Article Metrics

    Article views (790) PDF downloads (110) Cited by(13)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return