EI、Scopus 收录
中文核心期刊
Wang Tao, Zhu Jungao, Liu Sihong. DEM simulation on plasticity behavior of soil-rock mixtures with different fine contents. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(4): 1075-1084. DOI: 10.6052/0459-1879-21-618
Citation: Wang Tao, Zhu Jungao, Liu Sihong. DEM simulation on plasticity behavior of soil-rock mixtures with different fine contents. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(4): 1075-1084. DOI: 10.6052/0459-1879-21-618

DEM SIMULATION ON PLASTICITY BEHAVIOR OF SOIL-ROCK MIXTURES WITH DIFFERENT FINE CONTENTS

  • Received Date: November 22, 2021
  • Accepted Date: February 27, 2022
  • Available Online: February 28, 2022
  • Soil-rock mixtures are heterogeneous materials composed of coarse rocks with high strength and fine filling soils. The plasticity behavior of soil-rock mixtures is closely dependent on fine content. When the fine content is low, the soil-rock mixture is a rock-dominated structure and the plasticity behavior of soil-rock mixture is primarily controlled by the coarse grains. While the fine content is high, the soil-rock mixture is a soil-dominated structure and the plasticity behavior of soil-rock mixture is primarily controlled by the fine grains. However, the effect of fine content on the plasticity behavior of soil-rock mixtures and its mechanism remain unclear. This manuscript investigates the instability and non-associated behavior of rock-dominated soil-rock mixtures with different fine contents based on second order theory. In addition, the mesoscopic mechanism on how fine content affects plasticity behavior of soil-rock mixtures is revealed. It is found that fine grains help to stabilize the granular assembly by limiting macroscopic plastic deformations. Macroscopic plastic deformations decrease with the increase of fine content of soil-rock mixtures compared at the same stress ratio. The fine content is found to greatly affect the flow direction of soil-rock mixtures (i.e. normal direction of plastic potential surface). With the increase of fine content, the angle between normal direction of yield surface and plastic potential surface decreases. It means that the non-associated behavior becomes less pronounced with the increase of fine content. It is also found that the bifurcation domain of soil-rock mixtures becomes narrower when fine content increases. In spite of the fact that some fine grains act as skeleton grains together with coarse grains, fine grains are found not to influence the internal mechanical state of soil-rock mixtures. As a result, fine content does not change the normal direction of yield surface. Those conclusions drawn from this manuscript is of great significance to build elasto-plastic constitutive models for rock-dominated soil-rock mixtures considering the effect of fine content.
  • [1]
    廖秋林, 李晓, 郝钊等. 土石混合体的研究现状及研究展望. 工程地质学报, 2006, 14(6): 800-807 (Liao Qiulin, Li Xiao, Hao Zhao, et al. Current status and future trends of studies on rock and soil aggregates. Journal of Engineering Geology, 2006, 14(6): 800-807 (in Chinese) doi: 10.3969/j.issn.1004-9665.2006.06.014
    [2]
    Xu WJ, Zhang HY. Research on the effect of rock content and sample size on the strength behavior of soil-rock mixture. Bulletin of Engineering Geology and the Environment, 2021, 80(3): 2715-2726 doi: 10.1007/s10064-020-02050-z
    [3]
    王涛, 刘斯宏, 宋迎俊等. 基于骨架孔隙比的土石混合料强度变形特性. 岩土力学, 2020, 41(9): 2973-2983 (Wang Tao, Liu Sihong, Song Yingjun, et al. Strength and deformation characteristics of soil-rock mixtures using skeleton void ratio. Rock and Soil Mechanics, 2020, 41(9): 2973-2983 (in Chinese)
    [4]
    Lu Y, Liu S, Zhang Y, et al. Sustainable reuse of coarse aggregates in clay-based impervious core: compactability and permeability. Journal of Cleaner Production, 2021, 308: 127011 doi: 10.1016/j.jclepro.2021.127011
    [5]
    Lu Y, Liu S, Zhang Y, et al. Hydraulic conductivity of gravelly soils with various coarse particle contents subjected to freeze–thaw cycles. Journal of Hydrology, 2021, 598: 126302 doi: 10.1016/j.jhydrol.2021.126302
    [6]
    Wang T, Liu S, Wautier A, et al. An updated skeleton void ratio for gravelly sand mixtures considering the effect of grain size distribution. Canadian Geotechnical Journal, 2021, doi: 10.1139/cgj-2020-0570
    [7]
    Xu WJ, Qiang X, Hu RL. Study on the shear strength of soil–rock mixture by large scale direct shear test. International Journal of Rock Mechanics and Mining Sciences, 2011, 48(8): 1235-1247 doi: 10.1016/j.ijrmms.2011.09.018
    [8]
    Li S, Yang Z, Tian X, et al. Influencing factors of scale effects in large-scale direct shear tests of soil-rock mixtures based on particle breakage. Transportation Geotechnics, 2021, 31: 100677 doi: 10.1016/j.trgeo.2021.100677
    [9]
    Ahmadi M, Shire T, Mehdizadeh A, et al. DEM modelling to assess internal stability of gap-graded assemblies of spherical particles under various relative densities, fine contents and gap ratios. Computers and Geotechnics, 2020, 126: 103710 doi: 10.1016/j.compgeo.2020.103710
    [10]
    Cao X, Zhu Y, Gong J. Effect of the intermediate principal stress on the mechanical responses of binary granular mixtures with different fines contents. Granular Matter, 2021, 23: 1-19
    [11]
    Yao Y, Li J, Ni J, et al. Effects of gravel content and shape on shear behaviour of soil-rock mixture: Experiment and DEM modelling. Computers and Geotechnics, 2022, 141: 104476 doi: 10.1016/j.compgeo.2021.104476
    [12]
    Liu H, Zou D. Associated generalized plasticity framework for modeling gravelly soils considering particle breakage. Journal of Engineering Mechanics, 2013, 139(5): 606-615 doi: 10.1061/(ASCE)EM.1943-7889.0000513
    [13]
    徐卫卫, 石北啸, 陈生水, 等. 孔隙率对堆石料强度与变形的影响规律. 岩土工程学报, 2018, 40(Suppl. 2): 47-52

    XU Wei-wei, SHI Bei-xiao, CHEN Sheng-shui, et al. Effects of porosity on strength and deformation of rockfill aterials. Chinese Journal of Geotechnical Engineering, 2018, 40(Suppl. 2): 47-52 (in Chinese)
    [14]
    沈超敏, 刘斯宏. 颗粒材料破碎演化路径细观热力学机制. 力学学报, 2019, 51(1): 16-25 (Shen Chaomin, Liu Sihong. Evolution path for the particle breakage of granular materials: A micromechanical and thermodynamic insight. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(1): 16-25 (in Chinese)
    [15]
    王怡舒, 沈超敏, 刘斯宏等. 考虑颗粒转矩的接触网络诱发各向异性分析. 力学学报, 2021, 53(6): 1634-1646 (Wang Yishu, Shen Chaomin, Liu Sihong, Chen Jingtao. Shear-induced anisotropy analysis of contact networks incorporating particle rolling resistance. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(6): 1634-1646 (in Chinese)
    [16]
    刘嘉英, 周伟, 马刚等. 颗粒材料三维应力路径下的接触组构特性. 力学学报, 2019, 51(1): 26-35 (Liu Jiaying, Zhou Wei, Ma Gang, et al. Contact fabric characteristics of granular materials under three dimensional stress paths. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(1): 26-35 (in Chinese) doi: 10.6052/0459-1879-18-338
    [17]
    Zhu H, Nicot F, Darve F. Meso-structure organization in two-dimensional granular materials along biaxial loading path. International Journal of Solids and Structures, 2016, 96: 25-37 doi: 10.1016/j.ijsolstr.2016.06.025
    [18]
    Wautier A, Bonelli S, Nicot F. Rattlers' contribution to granular plasticity and mechanical stability. International Journal of Plasticity, 2019, 112: 172-193 doi: 10.1016/j.ijplas.2018.08.012
    [19]
    Liu J, Wautier A, Bonelli S, et al. Macroscopic softening in granular materials from a mesoscale perspective. International Journal of Solids and Structures, 2020, 193: 222-238
    [20]
    Cundall PA, Strack OD. A discrete numerical model for granular assemblies. Geotechnique, 1979, 29: 47-65 doi: 10.1680/geot.1979.29.1.47
    [21]
    Šmilauer V, Catalano E, Chareyre B, et al. Yade Documentation 2nd ed. The Yade Projectdoi:10.5281/zenodo.34073, 2015
    [22]
    Minh NH, Cheng YP. A DEM investigation of the effect of grain-size distribution on one-dimensional compression. Géotechnique, 2013, 63: 44-53
    [23]
    Shire T, O’Sullivan C, Hanley KJ, et al. Fabric and effective stress distribution in internally unstable soils. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140: 04014072 doi: 10.1061/(ASCE)GT.1943-5606.0001184
    [24]
    Lobo-Guerrero S, Vallejo LE. Discrete element method analysis of railtrack ballast degradation during cyclic loading. Granular Matter, 2006, 8: 195 doi: 10.1007/s10035-006-0006-2
    [25]
    Miura K, Maeda K, Furukawa M, et al. Physical characteristics of sands with different primary properties. Soils and Foundations, 1997, 37: 53-64
    [26]
    Nicot F, Sibille L, Darve F. Failure in rate-independent granular materials as a bifurcation toward a dynamic regime. International Journal of Plasticity, 2012, 29: 136-154 doi: 10.1016/j.ijplas.2011.08.002
    [27]
    Hill R. A general theory of uniqueness and stability in elastic-plastic solids. Journal of the Mechanics and Physics of Solids, 1958, 6: 236-249
    [28]
    Darve F, Servant G, Laouafa F, et al. Failure in geomaterials: continuous and discrete analyses. Computer Methods in Applied Mechanics and Engineering, 2004, 193: 3057-3085 doi: 10.1016/j.cma.2003.11.011
    [29]
    Darve F, Laouafa F. Instabilities in granular materials and application to landslides. Mechanics of Cohesive‐Frictional Materials:An International Journal on Experiments, Modelling and Computation of Materials and Structures, 2000, 5(8): 627-652
    [30]
    Wan R, Nicot F, Darve F. Failure in Geomaterials: A Contemporary Treatise. Elsevier, 2017.31
    [31]
    Gudehus G. A comparison of some constitutive laws for soils under radially symmetric loading and unloading. Numerical Methods in Geomechanics Aachen, 1979, 20: 1309-1323
    [32]
    钱劲松, 陈康为, 张磊. 粒料固有各向异性的离散元模拟与细观分析. 力学学报, 2018, 50(5): 1041-1050 (Qian Jinsong, Chen Kangwei, Zhang Lei. Simulation and micro-mechanics analysis of inherent anisotropy of granular by distinct element method. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(5): 1041-1050 (in Chinese) doi: 10.6052/0459-1879-18-061
    [33]
    Rothenburg L, Bathurst RJ. Analytical study of induced anisotropy in idealized granular materials. Geotechnique, 1989, 39: 601-614 doi: 10.1680/geot.1989.39.4.601
    [34]
    Oda M. Fabric tensor for discontinuous geological materials. Soils and Foundations, 1982, 22: 96-108 doi: 10.3208/sandf1972.22.4_96
    [35]
    Guo N, Zhao J. The signature of shear-induced anisotropy in granular media. Computers and Geotechnics, 2013, 47: 1-15 doi: 10.1016/j.compgeo.2012.07.002
    [36]
    Peters JF, Muthuswamy M, Wibowo J, et al. Characterization of force chains in granular material. Physical Review E, 2005, 72: 041307
    [37]
    Tordesillas A. Force chain buckling, unjamming transitions and shear banding in dense granular assemblies. Philosophical Magazine, 2007, 87: 4987-5016 doi: 10.1080/14786430701594848
    [38]
    Nemat-Nasser S. A micromechanically-based constitutive model for frictional deformation of granular materials. Journal of the Mechanics and Physics of Solids, 2000, 48: 1541-1563 doi: 10.1016/S0022-5096(99)00089-7
    [39]
    Li XS, Dafalias YF. Constitutive modeling of inherently anisotropic sand behavior. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128: 868-880 doi: 10.1061/(ASCE)1090-0241(2002)128:10(868)
  • Related Articles

    [1]Wang Xiaoming, Wu Rongxing, Jiang Yi, Xiao Heng. EXPLICITLY MODELING PERMANENT SET AND ANISOTROPY PROPERTY INDUCED BY STRESS SOFTENING FOR RUBBER-LIKE MATERIALS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(7): 1999-2009. DOI: 10.6052/0459-1879-21-060
    [2]Du Jianming Guo Xu. Fail-safe optimal design of truss structures based on robust optimization[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(4): 725-730. DOI: 10.6052/0459-1879-2011-4-lxxb2010-460
    [3]Qingsheng Yang, Lianhua Ma, Baosheng Liu. A continuum theory and numerical procedure for chemo-mechanical coupling behavior[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(3): 422-431. DOI: 10.6052/0459-1879-2010-3-2008-616
    [4]Effective continuum model of grid material based on couple-stress theory[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(6): 776-785. DOI: 10.6052/0459-1879-2008-6-2007-379
    [5]Hongwu Zhang. Topology optimization of continuum structures with materials exhibiting different tensile and compressive properties[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(5): 646-653. DOI: 10.6052/0459-1879-2008-5-2007-455
    [6]Weihong Zhang, Gaoming Dai, Fengwen Wang, Shiping Sun, Hicham Bassir. Topology optimization of material microstructures using strain energy-based prediction of effective elastic properties[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 39(1): 77-89. DOI: 10.6052/0459-1879-2007-1-2006-086
    [7]Lin Liu, Jun Yan, Gengdong Cheng. Elasto-plastic analysis for 2d structures with truss-like materials[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 39(1): 54-62. DOI: 10.6052/0459-1879-2007-1-2005-407
    [8]Topological optimization of continuum structure under the strategy of globalization of stress constraints[J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(3): 364-370. DOI: 10.6052/0459-1879-2006-3-2005-071
    [9]TOPOLOGY OPTIMIZATION OF TRUSS STRUCTURES BASED ON RELIABILITY 1)[J]. Chinese Journal of Theoretical and Applied Mechanics, 1998, 30(3): 277-284. DOI: 10.6052/0459-1879-1998-3-1995-127
    [10]基于变形动力学模型的黏弹性材料本构关系[J]. Chinese Journal of Theoretical and Applied Mechanics, 1993, 25(3): 375-379. DOI: 10.6052/0459-1879-1993-3-1995-655
  • Cited by

    Periodical cited type(12)

    1. 刘君,王立安,郭锋. 饱和黏土地基中桩基水平振动的时域半解析法研究. 振动与冲击. 2024(13): 90-97 .
    2. 杨松立,魏亚,叶周景,杨海露,杨碧宇,李鹏鹏,汪林兵. 车辆荷载激励下的水泥混凝土路面振动信号时频能量解析及车速估算. 中国公路学报. 2024(12): 310-325 .
    3. 王震强,李奎奎,汪过兵. 摩擦效应影响下矩形移动载荷作用对地面的动力响应分析. 力学与实践. 2024(06): 1242-1250 .
    4. 罗晨晖,麻友良. 基于路面平整度模拟的汽车行驶振动感应研究. 计算机仿真. 2023(02): 172-176 .
    5. 杨华中,赵建昌,余云燕,王立安. 流变性土排桩地基的禁振带隙. 浙江大学学报(工学版). 2023(07): 1410-1417 .
    6. 李奎奎,赵建昌,王立安. 矩形移动荷载作用下饱和-非饱和土双层地基的动力响应分析. 力学与实践. 2022(01): 131-137 .
    7. 王立安,余云燕. 振动压路机作业引起地基振动的解析法研究. 振动与冲击. 2022(04): 48-54 .
    8. 霍卫安. 冲孔桩施工引起周围地表振动的测试研究. 甘肃科技. 2022(01): 26-29 .
    9. 黄鹏,殷琳,张雯洁,周卓琳,易丙旺. 公共交通引起的地面振动衰减分析. 宁波工程学院学报. 2022(03): 15-20 .
    10. 李韶华,冯桂珍,丁虎. 考虑胎路多点接触的电动汽车-路面耦合系统振动分析. 力学学报. 2021(09): 2554-2568 . 本站查看
    11. 王立安,张家玮,李奎奎,刘生纬. 饱和-非饱和土双层地基在振动压路机作用下的振动响应. 岩土力学. 2021(11): 3182-3190 .
    12. 邹鸿翔,郭丁华,甘崇早,唐曙光,袁俊,魏克湘,张文明. 磁力耦合道路能量收集设计与动力学分析. 力学学报. 2021(11): 2941-2949 . 本站查看

    Other cited types(4)

Catalog

    Article Metrics

    Article views (833) PDF downloads (100) Cited by(16)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return