Citation: | Fan Shuangshuang, Liu Danyang, Duan Lixia. Codimension-2 bifurcation analysis of macroscopic traffic flow model. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(2): 482-494. DOI: 10.6052/0459-1879-21-509 |
[1] |
Sun DH, Zhang M, Tian C. Multiple optimal current difference effect in the lattice traffic flow model. Modern Physics Letters B, 2014, 28(11): 1450091 doi: 10.1142/S0217984914500912
|
[2] |
Helbing D, Tilch B. Generalized force model of traffic dynamics. Physica Review E, 1998, 58(1): 133-138 doi: 10.1103/PhysRevE.58.133
|
[3] |
Jiang R, Hu MB, Zhang HJ, et al. On some experimental features of car-following behavior and how to model them. Transportation Research Part B: Methodological, 2015, 80: 338-354 doi: 10.1016/j.trb.2015.08.003
|
[4] |
Ge HX, Zheng PJ. TDGL equation in lattice hydrodynamic model considering driver's physical delay. Nonlinear Dynamics, 2014, 76(1): 441-445 doi: 10.1007/s11071-013-1137-8
|
[5] |
Li YF, Sun DH, Liu WN, et al. Modeling and simulation for microscopic traffic flow based on multiple headway velocity and acceleration difference. Nonlinear Dynamics, 2011, 66(1): 15-28
|
[6] |
Zhu WX, Zhang LD. Analysis of car-following model with cascade compensation strategy. Physica A: Statistical Mechanics and Its Applications, 2016, 449: 265-274 doi: 10.1016/j.physa.2015.12.114
|
[7] |
Qin Y, Wang H. Cell transmission model for mixed traffic flow with connected and autonomous vehicles. Journal of Transportation Engineering Part A Systems, 2019, 145(5): 04019014 doi: 10.1061/JTEPBS.0000238
|
[8] |
Nagatani T. TDGL and MKDV equation for jamming transition in the lattice models of traffic. Physica A: Statistical Mechanics and Its Applications, 1999, 264: 581-592 doi: 10.1016/S0378-4371(98)00466-X
|
[9] |
Tang TQ, He J, Wu YH, et al. Propagating properties of traffic flow on a ring road without ramp. Physica A: Statistical Mechanics and Its Applications, 2014, 396: 164-172 doi: 10.1016/j.physa.2013.11.019
|
[10] |
葛红霞, 曹荣军, 李志鹏. 考虑双速度差效应的耦合映射跟驰模型. 物理学报, 1995, 51(2): 1035-1042 (Ge Hongxia, Cao Rongjun, Li Zhipeng. Dynamical model of traffic congestion and numerical simulation. Physical Review E:Statistical Physics Plasmas Fluids &Related Interdisciplinary Topics, 1995, 51(2): 1035-1042 (in Chinese)
|
[11] |
Nagatani T. Thermodynamic theory for the jamming transition in traffic flow. Physical Review E, 1998, 58(4): 4271-4276
|
[12] |
时伟, 刘喜敏, 卢守峰. 一种计算交通波传播速度的方法. 力学学报, 2011, 43(5): 850-855 (Shi Wei, Liu Ximin, Lu Shoufeng. An estimation approach of wave speed in real traffic flow. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(5): 850-855 (in Chinese) doi: 10.6052/0459-1879-2011-5-lxxb2010-709
|
[13] |
吴正. 低速混合型城市交通的流体力学模型. 力学学报, 1994, 26(2): 149-157 (Wu Zheng. A fluid dynamics model for the low speed traffic systems. Chinese Journal of Theoretical and Applied Mechanics, 1994, 26(2): 149-157 (in Chinese)
|
[14] |
Jiang R, Wu QS, Zhu ZJ. Full velocity difference model for a car-following theory. Physical Review E, 2001, 64(1): 017101 doi: 10.1103/PhysRevE.64.017101
|
[15] |
Ye JJ, Li KP, Jin XM. Simulating train movement in an urban railway based on an improved car-following model. Chinese Physics B, 2013, 22(12): 65-69
|
[16] |
Zhang HJ. Driver memory, Driver memory traffic viscosity and a viscous traffic flow model. Transportation Research Part B: Methodological, 2003, 37(1): 27-41 doi: 10.1016/S0191-2615(01)00043-1
|
[17] |
Tang TQ, Huang HJ. An extended OV model with consideration of driver's memory. International Journal of Modern Physics B, 2009, 23(5): 743-752 doi: 10.1142/S0217979209051966
|
[18] |
Sun YQ, Ge HX, Cheng RJ. An extended car-following model considering drivers memory and average speed of preceding vehicles with control strategy. Physica A: Statistical Mechanics and Its Applications, 2019, 521: 752-761 doi: 10.1016/j.physa.2019.01.092
|
[19] |
Li ZP, Li WZ, Xu SZ, et al. Analyses of vehicle's self-stabilizing effect in an extended optimal velocity model by utilizing historical velocity in an environment of intelligent transportation system. Nonlinear Dynamic, 2015, 80(1): 529-540
|
[20] |
Peng GH, Lu WZ, He HD. Nonlinear analysis of a new car-following model accounting for the global average optimal velocity difference. Modern Physics Letters B, 2016, 30(27): 274-286
|
[21] |
徐鉴, 徐荣改. 时滞车辆跟驰模型及其分岔现象. 力学进展, 2013, 43(1): 29-38 (Xu Jian, Xu Ronggai. Time-delayed car-following model and its bifurcation phenomenon. Advances in Mechanics, 2013, 43(1): 29-38 (in Chinese) doi: 10.6052/1000-0992-12-012
|
[22] |
Kuhne RD. Macroscopic freeway model for dense traffic-stop-start waves and incident detection. Transportation and Traffic Theory, 1984, 9: 21-42
|
[23] |
Lee HK, Lee HW, Kim D. Steady-state solutions of hydrodynamic traffic models. Physical Review E, 2004, 69: 016118 doi: 10.1103/PhysRevE.69.016118
|
[24] |
Saavedra P, Velasco RM. Phase-space analysis for hydrodynamic traffic models. Physical Review E, 2009, 79(6): 066103 doi: 10.1103/PhysRevE.79.066103
|
[25] |
Wang T, Cheng RJ, Ge HX. Analysis of a novel two-lane lattice hydrodynamic model considering the empirical lane changing rate and the self-stabilization effect. IEEE Access, 2019, 7: 174725-174733 doi: 10.1109/ACCESS.2019.2956783
|
[26] |
Cheng RJ, Ge HX, Wang JF. An extended continuum model accounting for the driver's timid and aggressive attributions. Physics Letters A, 2017, 381(15): 1302-1312 doi: 10.1016/j.physleta.2017.02.018
|
[27] |
Kuhne R, Michalopoulos P. Continuum flow models. Traffic Flow Theory: A State-of-the-Art Report, 1992: 5-9
|
[28] |
Li T. Nonlinear dynamics of traffic jams. Physica D: Nonlinear Phenomena, 2005, 207(1-2): 41-51
|
[29] |
刘力军, 王春玉, 贺国光. 交通流模型中分岔现象研究综述. 系统工程, 2005, 207(1-2): 41-51 (Liu Lijun, Wang Chunyu, He Guoguang. Nonlinear dynamics of traffic jams. Physica D: Nonlinear Phenomena, 2005, 207(1-2): 41-51 (in Chinese) doi: 10.1016/j.physd.2005.05.011
|
[30] |
Tang TQ, Huang HJ, Shang HY. An extended macro traffic flow accounting for the driver’s bounded rationality and numerical tests. Physica A: Statistical Mechanics and Its Applications, 2017, 468: 322-333 doi: 10.1016/j.physa.2016.10.092
|
[31] |
周伟, 林志敏, 褚衍东. 一类新的交通流跟驰模型的倍周期分岔与混沌. 甘肃科学学报, 2008, 20(4): 143-146 (Zhou Wei, Lin Zhimin, Zhu Yandong. The period-doubling bifurcation and chaos in a new car-following model of traffic flow. Journal of Gansu Sciences, 2008, 20(4): 143-146 (in Chinese) doi: 10.3969/j.issn.1004-0366.2008.04.039
|
[32] |
凌代俭, 肖鹏. 一类非线性车辆跟驰模型的稳定性与分岔特性. 交通运输工程与信息学报, 2009, 7(4): 6-11 (Ling Daijian, Xiao Peng. Stability and bifurcation characteristics of a class of nonlinear car-following models. Journal of Traffic and Transportation Engineering and Information, 2009, 7(4): 6-11 (in Chinese)
|
[33] |
Carrillo FA, Delgado J, Saavedra P, et al. Traveling waves catastrophes and bifurcations in a generic second order traffic flow model. International Journal of Bifurcation and Chaos, 2013, 23(12): 1350191 doi: 10.1142/S0218127413501915
|
[34] |
Kerner BS, Konhauser P. Cluster effect in initially homogeneous traffic flow. Physical Review E, 1993, 48(4): 2335-2338 doi: 10.1103/PhysRevB.48.2335
|
[35] |
Delgado J, Saavedra P. Global bifurcation diagram for the Kerner-Konhauser traffic flow model. International Journal of Bifurcation and Chaos, 2015, 25(5): 1550064
|
[36] |
艾文欢. 交通流非线性现象分支分析方法研究. [博士论文]. 西安: 西北工业大学, 2016
Ai Wenhuan. Research on the branch analysis method of traffic flow nonlinear phenomena. [PhD Thesis]. Xian: Northwestern Polytechnical University, 2016 (in Chinese)
|
[37] |
Ren WL, Cheng RJ, Ge HX, et al. Bifurcation control in an optimal velocity model via double time-delay feedback method. IEEE Access, 2020, 8: 216162-216175 doi: 10.1109/ACCESS.2020.3041794
|
[38] |
Ren WL, Cheng RJ, Ge HX. Bifurcation analysis for a novel heterogeneous continuum model considering electronic throttle angle changes with memory. Applied Mathematics and Computation, 2021, 401: 126079 doi: 10.1016/j.amc.2021.126079
|
[39] |
Ren WL, Cheng RJ, Ge HX. Bifurcation analysis of a heterogeneous continuum traffic flow model. Applied Mathematical Modelling, 2021, 94: 369-387 doi: 10.1016/j.apm.2021.01.025
|
[40] |
Zhai QT, Ge HX, Cheng RJ. An extended continuum model considering optimal velocity change with memory and numerical tests. Physica A: Statistical Mechanics and its Applications, 2018, 490: 774-785 doi: 10.1016/j.physa.2017.08.152
|
[1] | Chen Yong, He Hong, Zhang Wei, Zhou Ning. TRAFFIC FLOW DYNAMIC MODEL CONSIDERING THE INFLUENCES ON DRIVERS BASED ON FIELD FORCE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(5): 1219-1234. DOI: 10.6052/0459-1879-18-109 |
[2] | Yin Kaihong, Wu Zheng, Guo Mingmin. STUDY ON THE ACCELERATION OF TRAFFIC FLOW BASED ON THE EMPIRICAL DATA[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(2): 242-251. DOI: 10.6052/0459-1879-14-213 |
[3] | Jiang Jinsheng, Dong Liyun. INVESTIGATION ON TRAFFIC FLOW CHARACTERISTICS AROUND A TYPE C WEAVING SECTION BASED ON CELLULAR AUTOMATON MODEL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(6): 996-1004. DOI: 10.6052/0459-1879-12-030 |
[4] | Kang Sanjun, Xue Yu. STUDY ON THE IMPACT OF SETTINGS OF BUS STOPS WITHOUT BUS BAY ON TRAFFIC FLOW[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, (4): 718-726. DOI: 10.6052/0459-1879-11-212 |
[5] | Wu Zheng, Guo Mingmin, Xu Qian. STUDY ON OPTIMIZATION OF TRAFFIC FLOW VELOCITY-DENSITY MODELS FOR URBAN FREEWAY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, (4): 709-717. DOI: 10.6052/0459-1879-11-377 |
[6] | Measured data analysis of urban expressway and research on traffic flow models[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(4): 789-803. DOI: 10.6052/0459-1879-2010-4-lxxb2009-091 |
[7] | Zheng Wu. A macro traffic flow model with three lanes and numerical study[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(1): 41-48. DOI: 10.6052/0459-1879-2009-1-2007-172 |
[8] | Tieqiao Tang, Haijun Huang, S.C. Wong, Rui Jiang. Lane changing analysis for two-lane traffic flow[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(1): 49-54. DOI: 10.6052/0459-1879-2007-1-2006-282 |
[9] | Zheng Wu. On the numerical simulation of perturbation's propagation and development in traffic flow[J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(6): 785-791. DOI: 10.6052/0459-1879-2006-6-2005-392 |
[10] | A FLUID DYNAMICS MODEL FOR THE LOW SPEED TRAFFIC SYSTEMS[J]. Chinese Journal of Theoretical and Applied Mechanics, 1994, 26(2): 149-157. DOI: 10.6052/0459-1879-1994-2-1995-532 |