EI、Scopus 收录
中文核心期刊
Yang Tao, Zhou Shengxi, Cao Qingjie, Zhang Wenming, Chen Liqun. Some advances in nonlinear vibration energy harvesting technology. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 2894-2909. DOI: 10.6052/0459-1879-21-474
Citation: Yang Tao, Zhou Shengxi, Cao Qingjie, Zhang Wenming, Chen Liqun. Some advances in nonlinear vibration energy harvesting technology. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 2894-2909. DOI: 10.6052/0459-1879-21-474

SOME ADVANCES IN NONLINEAR VIBRATION ENERGY HARVESTING TECHNOLOGY

Funds: The project was supported by the (12345678)and (9876543)
  • Received Date: September 14, 2021
  • Accepted Date: October 19, 2021
  • Available Online: October 19, 2021
  • With the rapid development of low-power electronic equipment and self-powered wireless sensor networks in engineering, vibration energy harvesting has been widely used in aerospace engineering, mechanical engineering, biomedical engineering, and sustainable energy engineering. Vibration energy harvesting can not only convert vibration energy into usable electrical energy to power microelectronic equipment, but also reduce harmful vibrations to protect instruments and equipment. According to the different conversion mechanisms of vibration energy, the vibration energy harvesting system can be divided into electrostatic type, electromagnetic type, piezoelectric type, magnetostrictive type, triboelectric type and their hybrid type. Among them, piezoelectric and electromagnetic vibration energy conversion mechanisms have been widely used in various engineering fields due to their simple structure, easy assembly, and high energy conversion performance. Due to extreme environmental interference, broadband, low frequency and other vibrations are easy to occur in the engineering. It forces the rapid development of vibration energy harvesting technology in the direction of nonlinearity, which further attracts many scholars to study the optimal design of the structure and circuit of vibration energy harvesting. Firstly, this article summarizes the research progress of nonlinear vibration energy harvesting technology in the past ten years. It mainly includes the research status of design technology basis, nonlinear structure design, dynamic analysis and so on. Secondly, it focuses on the main research results of the integration of vibration energy harvesting and vibration suppression, including the application of nonlinear quasi-zero stiffness and nonlinear energy sink in the field of vibration energy harvesting. Finally, the optimized design of external vibration energy harvesting circuit and active control strategy are summarized, and effective methods to further improve the efficiency of nonlinear vibration energy harvesting are analyzed.
  • [1]
    Priya S, Inman DJ. Energy Harvesting Technologies. New York: Springer, 2009
    [2]
    Wei C, Jing X. A comprehensive review on vibration energy harvesting: Modelling and realization. Renewable and Sustainable Energy Reviews, 2017, 74: 1-18 doi: 10.1016/j.rser.2017.01.073
    [3]
    Yildirim T, Ghayesh MH, Li W, et al. A review on performance enhancement techniques for ambient vibration energy harvesters. Renewable Sustainable Energy Reviews, 2017, 71: 435-449 doi: 10.1016/j.rser.2016.12.073
    [4]
    刘祥建, 陈仁文. 压电振动能量收集装置研究现状及发展趋势. 振动与冲击, 2012, 31(16): 169-176 (Liu Xiangjian, Chen Renwen. Current situation and developing trend of piezoelectric vibration energy harvesters. Journal of Vibration and Shock, 2012, 31(16): 169-176 (in Chinese) doi: 10.3969/j.issn.1000-3835.2012.16.033
    [5]
    赵争鸣, 王旭东. 电磁能量收集技术现状及发展趋势. 电工技术学报, 2015, 30(13): 1-11 (Zhao Zhengming, Wang Xudong. The State-of-the-Art and the Future Trends of Electromagnetic Energy Harvesting. Transactions of China Electrotechnical Society, 2015, 30(13): 1-11 (in Chinese) doi: 10.3969/j.issn.1000-6753.2015.13.001
    [6]
    Tan T, Yan Z, Zou H, et al. Renewable energy harvesting and absorbing via multi-scale metamaterial systems for internet of things. Applied Energy, 2019, 254: 113717 doi: 10.1016/j.apenergy.2019.113717
    [7]
    Li W, Yang X, Zhang W, et al. Free vibration analysis of a spinning piezoelectric beam with geometric nonlinearities. Acta Mechanica Sinica, 2019, 35(4): 879-893 doi: 10.1007/s10409-019-00851-4
    [8]
    Yang T, Cao Q. Delay-controlled primary and stochastic resonances of the SD oscillator with stiffness nonlinearities. Mechanical Systems and Signal Processing, 2018, 103: 216-235 doi: 10.1016/j.ymssp.2017.10.002
    [9]
    Cao J, Wang W, Zhou S, et al. Nonlinear time-varying potential bistable energy harvesting from human motion. Applied Physics Letters, 2015, 107(14): 143904 doi: 10.1063/1.4932947
    [10]
    Wang G, Liao WH, Zhao Z, et al. Nonlinear magnetic force and dynamic characteristics of a tri-stable piezoelectric energy harvester. Nonlinear Dynamics, 2019, 97(4): 2371-2397 doi: 10.1007/s11071-019-05133-z
    [11]
    Gao M, Wang Y, Wang Y, et al. Experimental investigation of non-linear multi-stable electromagnetic-induction energy harvesting mechanism by magnetic levitation oscillation. Applied Energy, 2018, 220: 856-875 doi: 10.1016/j.apenergy.2018.03.170
    [12]
    Wang C, Zhang Q, Wang W. Low-frequency wideband vibration energy harvesting by using frequency up-conversion and quin-stable nonlinearity. Journal of Sound and Vibration, 2017, 399: 169-181 doi: 10.1016/j.jsv.2017.02.048
    [13]
    Cao Q, Xiong Y, Wiercigroch M. A novel model of dipteran flight mechanism. International Journal of Dynamics and Control, 2013, 1(1): 1-11 doi: 10.1007/s40435-013-0001-5
    [14]
    杨绍普, 曹庆杰, 张伟. 非线性动力学与控制的若干理论及应用. 北京: 科学出版社, 2011

    Yang Shaopu, Cao Qingjie, Zhang Wei. Some Theories and Applications of Nonlinear Dynamics and Control. Beijing: Science Press, 2011 (in Chinese))
    [15]
    杨涛. 多稳态能量收集系统的非线性动力学行为及应用研究. [博士论文]. 哈尔滨: 哈尔滨工业大学, 2019

    Yang Tao. Study on nonlinear dynamic behavior and application of multi-stable energy harvesting systems. [PhD Thesis]. Harbin: Harbin Institute of Technology, 2019 (in Chinese))
    [16]
    Zou H, Zhang W, Li W, et al. Magnetically coupled flextensional transducer for wideband vibration energy harvesting: design, modeling and experiments. Journal of Sound and Vibration, 2018, 416: 55-79 doi: 10.1016/j.jsv.2017.11.041
    [17]
    Zhou S, Cao J, Erturk A, et al. Enhanced broadband piezoelectric energy harvesting using rotatable magnets. Applied Physics Letters, 2013, 102(17): 173901 doi: 10.1063/1.4803445
    [18]
    Chen LQ, Jiang WA, Panyam M, et al. A broadband internally resonant vibratory energy harvester. Journal of Vibration and Acoustics, 2016, 138(6): 061007 doi: 10.1115/1.4034253
    [19]
    Chen LQ, Jiang WA. Internal resonance energy harvesting. Journal of Applied Mechanics, 2015, 82(3): 031004 doi: 10.1115/1.4029606
    [20]
    Daqaq MF. Response of uni-modal Duffing-type harvesters to random forced excitations. Journal of Sound and Vibration, 2010, 329: 3621-3631 doi: 10.1016/j.jsv.2010.04.002
    [21]
    吴子英, 叶文腾, 刘强. 双稳态电磁式振动能量捕获器超谐波响应研究. 计算力学学报, 2017, 43(5): 623-630 (Wu Ziying, Ye Wenteng, Liu Qiang. Research on the superharmonic effects of bistable electromagnetic vibration energy harvester. Chinese Journal of Computational Mechanics, 2017, 43(5): 623-630 (in Chinese)
    [22]
    Wang G, Wu H, Liao WH, et al. A modified magnetic force model and experimental validation of a tri-stable piezoelectric energy harvester. Journal of Intelligent Material Systems and Structures, 2020, 31(7): 967-979 doi: 10.1177/1045389X20905975
    [23]
    Wang C, Zhang Q, Wang W, et al. A low-frequency, wideband quad-stable energy harvester using combined nonlinearity and frequency up-conversion by cantilever-surface contact. Mechanical Systems and Signal Processing, 2018, 112: 305-318 doi: 10.1016/j.ymssp.2018.04.027
    [24]
    Jiang WA, Chen LQ. Snap-through piezoelectric energy harvesting. Journal of Sound and Vibration, 2014, 333(18): 4314-4325 doi: 10.1016/j.jsv.2014.04.035
    [25]
    Yang T, Cao Q. Time delay improves beneficial performance of a novel hybrid energy harvester. Nonlinear Dynamics, 2019, 96: 1511-1530 doi: 10.1007/s11071-019-04868-z
    [26]
    Yang T, Cao Q. Dynamics and energy generation of a hybrid energy harvester under colored noise excitations. Mechanical Systems and Signal Processing, 2019, 121: 745-766 doi: 10.1016/j.ymssp.2018.12.004
    [27]
    Wei C, Jing X. Vibrational energy harvesting by exploring structural benefits and nonlinear characteristics. Communications in Nonlinear Science and Numerical Simulation, 2017, 48: 288-306 doi: 10.1016/j.cnsns.2016.12.026
    [28]
    Wang F, Sun X, Xu J. A novel energy harvesting device for ultralow frequency excitation. Energy, 2018, 151: 250-260
    [29]
    陈仁文, 任龙, 夏桦康等. 多方向宽频带压电式振动能量采集器研究进展. 仪器仪表学报, 2014, 35(12): 2641-2652 (Chen Renwen, Ren long, Xia Huakang, et al. Research advance in multi-directional wide-band piezoelectric vibration energy harvesters. Chinese Journal of Scientific Instrument, 2014, 35(12): 2641-2652 (in Chinese)
    [30]
    岳喜海, 杨进, 文玉梅等. 多方向宽频磁电式振动能量采集器. 仪器仪表学报, 2013, 34(9): 1961-1967 (Yue Xihai, Yang Jin, Wen Yumei, et al. Multidirectional broadband magnetoelectric vibration energy collector. Chinese Journal of Scientific Instrument, 2013, 34(9): 1961-1967 (in Chinese)
    [31]
    陈文艺, 孟爱华, 刘成龙. 微型振动能量收集器的研究现状及发展趋势. 微纳电子技术, 2013, 11: 715-720 (Chen Wenyi, Meng Aihua, Liu Chenglong. Research status and developing trend of micro vibration-based energy harvesters. Micronanoelectronic Technology, 2013, 11: 715-720 (in Chinese)
    [32]
    张允, 王战江, 蒋淑兰等. 振动能量收集技术的研究现状与展望. 机械科学与技术, 2019, 7: 7-40 (Zhang Yun, Wang Zhanjiang, Jiang Shulan, et al. Retrospectives and perspectives of vibration energy harvest technologies. Mechanical Science and Technology for Aerospace Engineering, 2019, 7: 7-40 (in Chinese)
    [33]
    何远钦. 压电能量收集概论. 装备制造技术, 2011, 8: 56-58 (He Yuanqin. Conspectus of piezoelectric energy harvesting. Equipment Manufacturing Technology, 2011, 8: 56-58 (in Chinese) doi: 10.3969/j.issn.1672-545X.2011.02.021
    [34]
    唐刚, 刘景全, 马华安等. 微型压电振动能量采集器的研究进. 机械设计与研究, 2010, 26(4): 61-64 (Tang Gang, Liu Jingquan, Ma Hua'an, et al. A survey on research of micro piezoelectric vibration energy harvesters. Mechanical Design and Research, 2010, 26(4): 61-64 (in Chinese)
    [35]
    陈婧, 苏娟, 杜松怀等. 悬臂梁压电发电机输出特性及其影响因素分析. 电网与清洁能源, 2014, 30: 77-83 (Chen Jing, Su Juan, Du songhuai, et al. Analysis of the output characteristic and influence factors of the cantilever piezoelectric generator. Advances of Power System & Hydroelectric Engineering, 2014, 30: 77-83 (in Chinese) doi: 10.3969/j.issn.1674-3814.2014.08.018
    [36]
    Li H, Tian C, Deng ZD. Energy harvesting from low frequency applications using piezoelectric materials. Applied Physics Reviews, 2014, 1(4): 041301 doi: 10.1063/1.4900845
    [37]
    吴鹏飞, 袁天辰, 杨俭. 非线性电磁振动能量采集的辨识研究. 振动工程学报, 2021, 34(1): 116-126 (Wu Pengfei, Yuan Tianchen, Yang Jian. System identification of single-DOF electromagnetic vibration energy collector. Journal of Vibration Engineering, 2021, 34(1): 116-126 (in Chinese)
    [38]
    Carneiro P, Santos MPS, Rodrigues A, et al. Electromagnetic energy harvesting using magnetic levitation architectures: A review. Applied Energy, 2020, 260: 114119
    [39]
    钱铄, 杨子杨, 崔丹凤等. 电磁−压电复合式机械能量收集器. 测试技术学报, 2019, 33: 60-66 (Qian Shuo, Yang Ziyang, Cui Danfeng, et al. Electromagnetic-piezoelectric hybrid generator for mechanical energy. Journal of Test and Measurement Technology, 2019, 33: 60-66 (in Chinese)
    [40]
    Liu H, Fu H, Sun L, et al. Hybrid energy harvesting technology: From materials, structural design, system integration to applications. Renewable and Sustainable Energy Reviews, 2021, 137: 110473 doi: 10.1016/j.rser.2020.110473
    [41]
    Challa VR, Prasad MG, Fisher FT. A coupled piezoelectric-electromagnetic energy harvesting technique for achieving increased power output through damping matching. Smart Materials and Structures, 2009, 18(9): 95029 doi: 10.1088/0964-1726/18/9/095029
    [42]
    Karami MA, Inman DJ. Equivalent damping and frequency change for linear and nonlinear hybrid vibrational energy harvesting systems. Journal of Sound and Vibration, 2011, 330(23): 5583-5597 doi: 10.1016/j.jsv.2011.06.021
    [43]
    Lallart M, Inman DJ. Mechanical Effect of Combined Piezoelectric and Electromagnetic Energy Harvesting. Structural Dynamics and Renewable Energy. New York: Springer, 2011, 261-272
    [44]
    Rajarathinam M, Ali SF. Energy generation in a hybrid harvester under harmonic excitation. Energy Conversion and Management, 2018, 155: 10-19 doi: 10.1016/j.enconman.2017.10.054
    [45]
    Zhao L, Zou H, Yan G, et al. A water-proof magnetically coupled piezoelectric-electromagnetic hybrid wind energy harvester. Applied Energy, 2019, 239(1): 735-746
    [46]
    Li Z, Li T, Yang Z, et al. Toward a 0.33W piezoelectric and electromagnetic hybrid energy harvester:Design, experimental studies and self-powered applications. Applied Energy, 2019, 255: 113805
    [47]
    Beeby SP, Torah RN, Tudor MJ, et al. A micro electromagnetic generator for vibration energy harvesting. Journal of Micromechanics and microengineering, 2017, 17(7): 1257
    [48]
    Challa V, Prasad M, Shi Y, et al. A vibration energy harvesting device with bidirectional resonance frequency tunability. Smart Materials and Structures, 2008, 75: 1-10
    [49]
    韩彦伟. 一类几何非线性系统的动力学行为及应用研究. [博士论文]. 哈尔滨: 哈尔滨工业大学, 2015

    Han Yanwei. Nonlinear dynamics of a class of geometrical nonlinear system and its application. [PhD Thesis]. Harbin: Harbin Institute of Technology, 2015 (in Chinese))
    [50]
    Han Y, Cao Q, Chen Y, et al. A novel smooth and discontinuous oscillator with strong irrational nonlinearities. Science China Physics, Mechanics and Astronomy, 2012, 10: 1832-1843
    [51]
    Han Y, Cao Q, Chen Y, et al. Chaotic thresholds for the piecewise linear discontinuous system with multiple well potentials. International Journal of Non-Linear Mechanics, 2015, 70: 145-152 doi: 10.1016/j.ijnonlinmec.2014.09.007
    [52]
    Han N, Cao Q. Global bifurcations of a rotating pendulum with irrational nonlinearity. Communications in Nonlinear Science and Numerical Simulation, 2016, 36: 431-445
    [53]
    Hao Z, Cao Q, Wiercigroch M. Nonlinear dynamics of the quasi-zero-stiffness SD oscillator based upon the local and global bifurcation analyses. Nonlinear Dynamics, 2017, 87(2): 987-1014 doi: 10.1007/s11071-016-3093-6
    [54]
    Barton D, Burrow S, Clare L. Energy harvesting from vibrations with a nonlinear oscillator. Journal of Vibration and Acoustics, 2010, 132: 0210091
    [55]
    Masana R, Daqaq MF. Electromechanical modeling and nonlinear analysis of axially-loaded energy harvesters. Journal of Vibration and Acoustics, 2011, 133: 011007 doi: 10.1115/1.4002786
    [56]
    Ramlan R, Brennan MJ, Mace RB, et al. Potential benefits of a non-linear stiffness in an energy harvesting device. Nonlinear Dynamics, 2010, 59: 545-558 doi: 10.1007/s11071-009-9561-5
    [57]
    Cao Q, Wiercigroch M, Pavlovskaia EE, et al. Archetypal oscillator for smooth and discontinuous dynamics. Physical Review E, 2006, 74: 046218 doi: 10.1103/PhysRevE.74.046218
    [58]
    Hao Z, Cao Q, Wiercigroch M. Two-sided damping constraint control strategy for high-performance vibration isolation and end-stop impact protection. Nonlinear Dynamics, 2016, 86: 2129-2144 doi: 10.1007/s11071-016-2685-5
    [59]
    Yang T, Liu J, Cao Q. Response analysis of the archetypal smooth and discontinuous oscillator for vibration energy harvesting. Physica A, 2018, 507: 358-373 doi: 10.1016/j.physa.2018.05.103
    [60]
    Jiang WA, Chen LQ. Stochastic averaging of energy harvesting systems. International Journal of Non-Linear Mechanics, 2016, 85: 174-187 doi: 10.1016/j.ijnonlinmec.2016.07.002
    [61]
    Liu WQ, Badel A, Formosa F, et al. Wideband energy harvesting using a combination of an optimized synchronous electric charge extraction circuit and a bistable harvester. Smart Materials and Structures, 2013, 22: 125038 doi: 10.1088/0964-1726/22/12/125038
    [62]
    Liu WQ, Badel A, Formosa F, et al. Novel piezoelectric bistable oscillator architecture for wideband vibration energy harvesting. Smart Materials and Structures, 2013, 22: 035013 doi: 10.1088/0964-1726/22/3/035013
    [63]
    Zhou S, Cao J, Inman DJ, et al. Broadband tristable energy harvester: modeling and experiment verification. Applied Energy, 2014, 133: 33-39 doi: 10.1016/j.apenergy.2014.07.077
    [64]
    Panyam M, Daqaq MF. Characterizing the effective bandwidth of tri-stable energy harvesters. Journal of Sound and Vibration, 2017, 386: 336-358 doi: 10.1016/j.jsv.2016.09.022
    [65]
    Li H, Qin W, Lan C, et al. Dynamics and coherence resonance of Tri-stable energy harvesting system. Smart Materials and Structures, 2015, 25(1): 015001
    [66]
    Leng Y, Tan D, Liu J, et al. Magnetic force analysis and performance of a Tri-stable piezoelectric energy harvester under random excitation. Journal of Sound and Vibration, 2017, 406: 146-160 doi: 10.1016/j.jsv.2017.06.020
    [67]
    Wang G, Zhao Z, Liao WH, et al. Characteristics of a tri-stable piezoelectric vibration energy harvester by considering geometric nonlinearity and gravitation effects. Mechanical Systems and Signal Processing, 2020, 138: 106571 doi: 10.1016/j.ymssp.2019.106571
    [68]
    Zhou Z, Qin W, Zhu P. Improve efficiency of harvesting random energy by snap-through in a quad-stable harvester. Sensors and Actuators A:Physical, 2016, 243: 151-158 doi: 10.1016/j.sna.2016.03.024
    [69]
    Zhou Z, Qin W, Yang Y, et al. Improving efficiency of energy harvesting by a novel penta-stable configuration. Sensors and Actuators A:Physical, 2017, 265: 297-305 doi: 10.1016/j.sna.2017.08.039
    [70]
    Kim IH, Jung HJ, Bo ML, et al. Broadband energy-harvesting using a two degree-of-freedom vibrating body. Applied Physics Letters, 2011, 98(21): 214102 doi: 10.1063/1.3595278
    [71]
    Andò B, Baglio S, Maiorca F, et al. Analysis of two dimensional, wide-band, bistable vibration energy harvester. Sensors and Actuators A:Physical, 2013, 202(11): 176-182
    [72]
    Park JC, Park JY. Asymmetric PZT bimorph cantilever for multi-dimensional ambient vibration harvesting. Ceramics International, 2013, 39: S653-S657 doi: 10.1016/j.ceramint.2012.10.155
    [73]
    Su WJ, Zu J. An innovative tri-directional broadband piezoelectric energy harvester. Applied Physics Letters, 2013, 103(20): 203901 doi: 10.1063/1.4830371
    [74]
    Chen K, Gao F, Liu Z, et al. A nonlinear M-shaped tri-directional piezoelectric energy harvester. Smart Materials and Structures, 2021, 30(4): 045017 doi: 10.1088/1361-665X/abe87e
    [75]
    Xu J, Tang J. Multi-directional energy harvesting by piezoelectric cantilever-pendulum with internal resonance. Applied Physics Letters, 2015, 107(21): 213902 doi: 10.1063/1.4936607
    [76]
    Xu J, Tang J. Modeling and analysis of piezoelectric cantilever-pendulum system for multi-directional energy harvesting. Journal of Intelligent Material Systems and Structure, 2017, 28(3): 323-338 doi: 10.1177/1045389X16642302
    [77]
    Chen R, Long R, Xia H, et al. Energy harvesting performance of a dandelion-like multi-directional piezoelectric vibration energy harvester. Sensors and Actuators A:Physical, 2015, 230: 1-8 doi: 10.1016/j.sna.2015.03.038
    [78]
    Feng L, Liu G, Guo H, et al. Hybridized nanogenerator based on honeycomb-like three electrodes for efficient ocean wave energy harvesting. Nano Energy, 2018, 47: 217-223 doi: 10.1016/j.nanoen.2018.02.042
    [79]
    Gu Y, Liu W, Zhao C, et al. A goblet-like non-linear electromagnetic generator for planar multi-directional vibration energy harvesting. Applied Energy, 2020, 266: 114846 doi: 10.1016/j.apenergy.2020.114846
    [80]
    Zhang Y, Yang F, Li Y, et al. Design and numerical investigation of a multi-directional energy-harvesting device for UUVs. Energy, 2020, 214: 118978
    [81]
    Yang T, Cao Q, Li Q, et al. A multi-directional multistable device: Modeling, experiment verification and applications. Mechanical Systems and Signal Processing, 2021, 146: 106986 doi: 10.1016/j.ymssp.2020.106986
    [82]
    Zheng R, Nakano K, Hu H, et al. An application of stochastic resonance for energy harvesting in a bistable vibrating system. Journal of Sound and Vibration, 2014, 333: 2568-2587 doi: 10.1016/j.jsv.2014.01.020
    [83]
    Fokou IM, Buckjohn CND, Siewe MS, et al. Probabilistic distribution and stochastic P-bifurcation of a hybrid energy harvester under colored noise. Communications in Nonlinear Science and Numerical Simulation, 2018, 56: 177-197 doi: 10.1016/j.cnsns.2017.08.006
    [84]
    Li H, Qin W. Dynamics and coherence resonance of a laminated piezoelectric beam for energy harvesting. Nonlinear Dynamics, 2015, 81: 1751-1757 doi: 10.1007/s11071-015-2104-3
    [85]
    Daqaq MF. On intentional introduction of stiffness nonlinearities for energy harvesting under white Gaussian excitations. Nonlinear Dynamics, 2012, 69: 1063-1079 doi: 10.1007/s11071-012-0327-0
    [86]
    Borowiec M, Litak G, Friswell MI, et al. Energy harvesting in a nonlinear cantilever piezoelastic beam system excited by random vertical vibrations. International Journal of Structural Stability and Dynamics, 2014, 14(8): 1440018 doi: 10.1142/S0219455414400185
    [87]
    Kumar P, Narayanan S, Adhikari S, et al. Fokker-Planck equation analysis of randomly excited nonlinear energy harvester. Journal of Sound and Vibration, 2014, 333: 2040-2053 doi: 10.1016/j.jsv.2013.11.011
    [88]
    李海涛. 非线性能量采集系统的相干共振与动力学特性研究. [博士论文]. 西安: 西北工业大学, 2017

    Li Haitao. Dynamics and coherence resonance of nonlinear energy harvesting system. [PhD Thesis]. Xi'an: Northwestern Polytechnical University, 2017 (in Chinese))
    [89]
    Xiao S, Jin Y. Response analysis of the piezoelectric energy harvester under correlated white noise. Nonlinear Dynamics, 2017, 90(3): 2069-2082 doi: 10.1007/s11071-017-3784-7
    [90]
    Xu M, Jin X, Wang Y, et al. Stochastic averaging for nonlinear vibration energy harvesting system. Nonlinear Dynamics, 2014, 78: 1451-1459 doi: 10.1007/s11071-014-1527-6
    [91]
    Jin X, Wang Y, Xu M, et al. Semi-analytical solution of random response for nonlinear vibration energy harvesters. Journal of Sound and Vibration, 2015, 340: 267-282 doi: 10.1016/j.jsv.2014.11.043
    [92]
    姜文安. 振动能量非线性采集器的解析、数值和实验研究. [博士论文]. 上海: 上海大学, 2015

    Jiang Wenan. Analysis, Simulation and Experiment of Vibration-based Nonlinear Energy Harvesting. [PhD Thesis]. Shanghai: Shanghai University, 2015 (in Chinese))
    [93]
    Zhang Y, Jin Y. Stochastic dynamics of a piezoelectric energy harvester with correlated colored noises from rotational environment. Nonlinear Dynamics, 2019, 98(1): 501-515 doi: 10.1007/s11071-019-05208-x
    [94]
    胡海岩, 王在华. 非线性时滞动力系统的研究进展. 力学进展, 1999, 29(4): 501-512 (Hu Haiyan, Wang Zaihua. Review on nonlinear dynamic systems involving time delay. Advances in Mechanics, 1999, 29(4): 501-512 (in Chinese) doi: 10.3321/j.issn:1000-0992.1999.04.008
    [95]
    徐鉴, 裴利军. 非线性时滞动力系统的研究进展. 力学进展, 2006, 36(1): 17-30 (Xu Jian, Pei Lijun. Advances in dynamics for delay systems. Advances in Mechanics, 2006, 36(1): 17-30 (in Chinese) doi: 10.3321/j.issn:1000-0992.2006.01.008
    [96]
    蔡国平, 陈龙祥. 时滞反馈控制的若干问题. 力学进展, 2013, 43(1): 21-28 (Cai Guoping, Chen Longxiang. Some problems of delayed feedback control. Advances in Mechanics, 2013, 43(1): 21-28 (in Chinese) doi: 10.6052/1000-0992-12-014
    [97]
    张舒, 徐鉴. 时滞耦合系统非线性动力学的研究进展. 力学学报, 2017, 49(3): 565-587 (Zhang Shu, Xu Jian. Review on nonlinear dynamics in systems with coupling delays. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(3): 565-587 (in Chinese) doi: 10.6052/0459-1879-17-123
    [98]
    Ghouli Z, Hamdi M, Lakrad F, et al. Quasiperiodic energy harvesting in a forced and delayed duffing harvester device. Journal of Sound and Vibration, 2017, 407: 271-285 doi: 10.1016/j.jsv.2017.07.005
    [99]
    Ghouli Z, Hamdi M, Belhaq M. Energy harvesting from quasi-periodic vibrations using electromagnetic coupling with delay. Nonlinear Dynamics, 2017, 89(3): 1625-1636 doi: 10.1007/s11071-017-3539-5
    [100]
    Belhaq M, Ghouli Z, Hamdi M. Energy harvesting in a Mathieu-van der Pol-Duffing MEMS device using time delay. Nonlinear Dynamics, 2018, 94: 2537-2546 doi: 10.1007/s11071-018-4508-3
    [101]
    Chen Z, He J, Liu J, et al. Switching delay in self-powered nonlinear piezoelectric vibration energy harvesting circuit: mechanisms, effects, and solutions. IEEE Transactions on Power Electronics, 2018, 34(3): 2427-2440
    [102]
    陆泽琦, 陈立群. 非线性被动隔振的若干进展. 力学学报, 2017, 49(3): 550-564 (Lu Zeqi, Chen Liqun. Some recent progresses in nonlinear passive isolations of vibrations. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(3): 550-564 (in Chinese)
    [103]
    Tang X, Zuo L. Simultaneous energy harvesting and vibration control of structures with tuned mass dampers. Journal of Intelligent Material Systems and Structures, 2012, 23(18): 2117-2127 doi: 10.1177/1045389X12462644
    [104]
    Brennan MJ, Tang B, Melo GP, et al. An investigation into the simultaneous use of a resonator as an energy harvester and a vibration absorber. Journal of Sound and Vibration, 2014, 333(5): 1331-1343 doi: 10.1016/j.jsv.2013.10.035
    [105]
    Davis RB, McDowell MD. Combined Euler column vibration isolation and energy harvesting. Smart Materials and Structures, 2017, 26(5): 055001 doi: 10.1088/1361-665X/aa6721
    [106]
    Zhang W, Zhao J. Analysis on nonlinear stiffness and vibration isolation performance of scissor-like structure with full types. Nonlinear Dynamics, 2016, 86(1): 17-36 doi: 10.1007/s11071-016-2869-z
    [107]
    Wang K, Zhou J, Xu D, et al. Lower band gaps of longitudinal wave in a one-dimensional periodic rod by exploiting geometrical nonlinearity. Mechanical Systems and Signal Processing, 2019, 124: 664-678 doi: 10.1016/j.ymssp.2019.02.008
    [108]
    Ding H, Chen LQ. Nonlinear vibration of a slightly curved beam with quasi-zero-stiffness isolators. Nonlinear Dynamics, 2019, 95(3): 2367-2382 doi: 10.1007/s11071-018-4697-9
    [109]
    Drezet C, Kacem N, Bouhaddi N. Design of a nonlinear energy harvester based on high static low dynamic stiffness for low frequency random vibrations. Sensors and Actuators A: Physical, 2018, 283: 54-64 doi: 10.1016/j.sna.2018.09.046
    [110]
    Cao D, Guo X, Hu W. A novel low-frequency broadband piezoelectric energy harvester combined with a negative stiffness vibration isolator. Journal of Intelligent Material Systems and Structures, 2019, 30(7): 1045389X1982983
    [111]
    Zou D, Liu G, Rao Z, et al. A device capable of customizing nonlinear forces for vibration energy harvesting, vibration isolation, and nonlinear energy sink. Mechanical Systems and Signal Processing, 2020, 147: 107101
    [112]
    Lu Z, Wu D, Ding H, et al. Vibration isolation and energy harvesting integrated in a Stewart platform with high static and low dynamic stiffness. Applied Mathematical Modelling, 2020, 89: 249-267
    [113]
    Lu Z, Shao D, Fang Z, et al. Integrated vibration isolation and energy harvesting via a bistable piezo-composite plate. Journal Vibration and Control, 2019, 26(9-10): 107754631988981
    [114]
    Yang T, Cao Q, Hao Z. A novel nonlinear mechanical oscillator and its application in vibration isolation and energy harvesting. Mechanical Systems and Signal Processing, 2021, 155: 107636 doi: 10.1016/j.ymssp.2021.107636
    [115]
    Ahmadabadi ZN, Khadem SE. Nonlinear vibration control and energy harvesting of a beam using a nonlinear energy sink and a piezoelectric device. Journal of Sound and Vibration, 2014, 333: 4444-4457 doi: 10.1016/j.jsv.2014.04.033
    [116]
    Zhang Y, Tang LH, Liu KF. Piezoelectric energy harvesting with a nonlinear energy sink. Journal of Intelligent Material Systems and Structures, 2017, 28: 307-322 doi: 10.1177/1045389X16642301
    [117]
    Li X, Zhang Y, Ding H, et al. Integration of a nonlinear energy sink and a piezoelectric energy harvester. Applied Mathematics and Mechanics (English Edition) , 2017, 38: 1019-1030 doi: 10.1007/s10483-017-2220-6
    [118]
    Xiong L, Tang L, Liu K, et al. Broadband piezoelectric vibration energy harvesting using a nonlinear energy sink. Journal of Physics D:Applied Physics, 2018, 51: 185502 doi: 10.1088/1361-6463/aab9e3
    [119]
    Kremer D, Liu K. A nonlinear energy sink with an energy harvester: Transient responses. Journal of Sound and Vibration, 2014, 333(20): 4859-4880 doi: 10.1016/j.jsv.2014.05.010
    [120]
    Kremer D, Liu K. A nonlinear energy sink with an energy harvester: Harmonically forced responses. Journal of Sound and Vibration, 2017, 410: 287-302 doi: 10.1016/j.jsv.2017.08.042
    [121]
    Pennisi G, Mann BP, Naclerio N, et al. Design and experimental study of a Nonlinear Energy Sink coupled to an electromagnetic energy harvester. Journal of Sound and Vibration, 2018, 437: 340-357 doi: 10.1016/j.jsv.2018.08.026
    [122]
    Remick K, Quinn DD, McFarland DM, et al. High-frequency vibration energy harvesting from impulsive excitation utilizing intentional dynamic instability caused by strong nonlinearity. Journal of Sound and Vibration, 2016, 370: 259-279 doi: 10.1016/j.jsv.2016.01.051
    [123]
    Fang Z, Zhang Y, Li X, et al. Integration of a nonlinear energy sink and a giant magnetostrictive energy harvester. Journal of Sound and Vibration, 2017, 391: 35-49 doi: 10.1016/j.jsv.2016.12.019
    [124]
    Fang Z, Zhang Y, Li X, et al. Complexification-averaging analysis on a giant magnetostrictive harvester integrated with a nonlinear energy sink. Journal of Vibration and Acoustics, 2018, 140(2): 021009 doi: 10.1115/1.4038033
    [125]
    Zhang Y, Su C, Ni Z, et al. A multifunctional lattice sandwich structure with energy harvesting and nonlinear vibration control. Composite Structures, 2019, 221: 110875 doi: 10.1016/j.compstruct.2019.04.047
    [126]
    Zhang Y, Wang S, Ni Z, et al. Integration of a nonlinear vibration absorber and levitation magnetoelectric energy harvester for wholespacecraft systems. Acta Mechanica Solida Sinica, 2019, 32: 298-309 doi: 10.1007/s10338-019-00081-y
    [127]
    Tian W, Li Y, Yang Z, et al. Suppression of nonlinear aeroelastic responses for a cantilevered trapezoidal plate in hypersonic airflow using an energy harvester enhanced nonlinear energy sink. International Journal of Mechanical Sciences, 2020, 172: 105417 doi: 10.1016/j.ijmecsci.2020.105417
    [128]
    Chiacchiari S, Romeo F, McFarland DM, et al. Vibration energy harvesting from impulsive excitations via a bistable nonlinear attachment. International Journal of Non-Linear Mechanics, 2017, 94: 84-97 doi: 10.1016/j.ijnonlinmec.2017.04.007
    [129]
    Shu YC, Lien IC, Wu WJ. An improved analysis of the SSHI interface in piezoelectric energy harvesting. Smart Materials and Structures, 2007, 16(6): 2253 doi: 10.1088/0964-1726/16/6/028
    [130]
    Lallart M, Guyomar D. An optimized self-powered switching circuit for non-linear energy harvesting with low voltage output. Smart Materials and Structures, 2008, 17(3): 035030 doi: 10.1088/0964-1726/17/3/035030
    [131]
    Wu Y, Badel A, Formosa F, et al. Piezoelectric vibration energy harvesting by optimized synchronous electric charge extraction. Journal of Intelligent Material Systems and Structures, 2013, 24(12): 1445-1458 doi: 10.1177/1045389X12470307
    [132]
    Wang G, Li P, Wen Y, et al. Self-powered ultra-low-power low-threshold synchronous circuit for weak piezoelectric energy harvesting. Sensors and Actuators A:Physical, 2021, 322: 112632 doi: 10.1016/j.sna.2021.112632
    [133]
    Zhu L, Chen R, Liu X. Theoretical analyses of the electronic breaker switching method for nonlinear energy harvesting interfaces. Journal of Intelligent Material Systems and Structures, 2012, 23(4): 441-451 doi: 10.1177/1045389X11435433
    [134]
    Shi G, Xia Y, Wang X, et al. An efficient self-powered piezoelectric energy harvesting CMOS interface circuit based on synchronous charge extraction technique. IEEE Transactions on Circuits and Systems I: Regular Papers, 2018, 605(2): 804-817
    [135]
    Cheng C, Chen Z, Xiong Y, et al. A high-efficiency, self-powered nonlinear interface circuit for bi-stable rotating piezoelectric vibration energy harvesting with nonlinear magnetic force. International Journal of Applied Electromagnetics and Mechanics, 2016, 51(3): 235-248 doi: 10.3233/JAE-150093
    [136]
    Wang X, Xia Y, Shi G, et al. A self-powered rectifier-less synchronized switch harvesting on inductor interface circuit for piezoelectric energy harvesting. IEEE Transactions on Power Electronics, 2021, 36(8): 9149-9159 doi: 10.1109/TPEL.2021.3052573
    [137]
    Zhou S, Cao J, Inman DJ, et al. Impact-induced high-energy orbits of nonlinear energy harvesters. Applied Physics Letters, 2015, 106(9): 093901 doi: 10.1063/1.4913606
    [138]
    Zhou S, Cao J, Lin J. Theoretical analysis and experimental verification for improving energy harvesting performance of nonlinear monostable energy harvesters. Nonlinear Dynamics, 2016, 86(3): 1599-1611 doi: 10.1007/s11071-016-2979-7
    [139]
    Fang S, Wang S, Miao G, et al. Comprehensive theoretical and experimental investigation of the rotational impact energy harvester with the centrifugal softening effect. Nonlinear Dynamics, 2020, 101(1): 123-152 doi: 10.1007/s11071-020-05732-1
    [140]
    Mallick D, Amann A, Roy S. Surfing the High Energy Output Branch of Nonlinear Energy Harvesters. Physical Review Letters, 2016, 117(19): 197701 doi: 10.1103/PhysRevLett.117.197701
    [141]
    Lan C, Tang L, Qin W. Obtaining high-energy responses of nonlinear piezoelectric energy harvester by voltage impulse perturbations. The European Physical Journal Applied Physics, 2017, 79(2): 20902 doi: 10.1051/epjap/2017170051
  • Related Articles

    [1]An Xinlei, Ren Yanlan. DYNAMICS OF FILIPPOV CHAY NEURON BASED ON THRESHOLD CONTROL STRATEGY AND COUPLING SYNCHRONIZATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(4): 1068-1087. DOI: 10.6052/0459-1879-23-405
    [2]Wu Wannan, Xiao Yabin, Wang Liyao, Yue Lianjie, Yang Li. INTEGRATED DESIGN OF FOREBODY/INLET WITH DUAL-WAVERIDER IN THE STREAM DIRECTION BASED ON DISCRETE ISO-CONTRACTION RATIO[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(12): 2844-2856. DOI: 10.6052/0459-1879-23-400
    [3]Qiu Jingran, Zhao Lihao. PROGRESSES IN SWIMMING STRATEGY OF SMART PARTICLES IN COMPLEX FLOWS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(10): 2630-2639. DOI: 10.6052/0459-1879-21-402
    [4]Luo Caoqun, Sun Jialiang, Wen Hao, Hu Haiyan, Jin Dongping. RESEARCH ON SEPARATION STRATEGY AND DEPLOYMENT DYNAMICS OF A SPACE MULTI-RIGID-BODY SYSTEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 503-513. DOI: 10.6052/0459-1879-19-307
    [5]Fu Xiaodong, Chen Li. AN INPUT LIMITED REPETITIVE LEARNING CONTROL OF FLEXIBLE-BASE TWO-FLEXIBLE-LINK AND TWO-FLEXIBLE-JOINT SPACE ROBOT WITH INTEGRATION OF MOTION AND VIBRATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 171-183. DOI: 10.6052/0459-1879-19-289
    [6]Chuyuan Liu, Zesen Liu, Hanwen Song. THE SIMULATION OF AIRFOIL FLUTTER CHARACTERISTIC BASED ON ACTIVE CONTROL STRATEGY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 333-340. DOI: 10.6052/0459-1879-18-265
    [7]Chen Liming Dai Zheng Gu Yu Fang Daining. Integrated optimization design of light-weight multilayer thermal protection structures[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(2): 289-295. DOI: 10.6052/0459-1879-2011-2-lxxb2009-500
    [8]Jun Zhou, Youhe Zhou. A new simple method of implicit time integration for dynamic problems of engineering structures[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(1): 91-99. DOI: 10.6052/0459-1879-2007-1-2006-167
    [9]Integrated design of porous materials and structures with scale-coupled effect[J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(4): 522-529. DOI: 10.6052/0459-1879-2006-4-2005-209
    [10]有孔隙的耦合热弹性体动力学的一些基本原理[J]. Chinese Journal of Theoretical and Applied Mechanics, 1996, 28(1): 55-65. DOI: 10.6052/0459-1879-1996-1-1995-302
  • Cited by

    Periodical cited type(20)

    1. 刘宗通,马建军,郭颖. 有限深度介质上梁非线性能量汇减振的Winkler地基实现. 振动与冲击. 2024(01): 237-245 .
    2. 周坤涛,杨涛,葛根,郝淑英,冯晶晶,张琪昌. 变截面压电悬臂梁能量采集器在高斯白噪声激励下的稳态统计特性研究. 振动工程学报. 2024(05): 864-874 .
    3. 伍芷娴,王锁,李支援,梅旭涛,周生喜. 旋转环境下的磁耦合双稳态能量俘获机理研究. 振动工程学报. 2024(06): 964-975 .
    4. 王德莉,李晨莹,吴炳增,焦一宇,裴海清,徐伟. 联合噪声驱动下耦合记忆阻尼Rayleigh振子族的节律模式过渡分析. 力学学报. 2024(08): 2381-2396 . 本站查看
    5. 张湧崟,彭剑,易昱东,孙洪鑫,禹见达. 时滞作用下电磁-压电弹性梁的俘能特性分析. 噪声与振动控制. 2024(05): 39-43 .
    6. 徐海涛,周生喜. 非线性俘能系统机电耦合动力学模型分析及故障诊断应用研究. 振动工程学报. 2024(10): 1714-1722 .
    7. 姜文安,卞明礼,陈立群,毕勤胜. 簇发振荡能量采集动力学理论研究进展. 动力学与控制学报. 2024(08): 1-12 .
    8. 刘国平,杨朝舒,何忠波,周景涛,孙民政. 面向微振信号的驻极体减振俘能装置设计与建模. 力学学报. 2023(01): 169-181 . 本站查看
    9. 杨楠,孙麟. 悬臂梁型混合俘能器研究进展. 节能. 2023(04): 94-96 .
    10. 范圣平,李竞,李林勇,樊小鹏,李华亮,高南沙. 电磁阻尼器工作特性的理论模型与试验研究. 西北工业大学学报. 2023(04): 688-696 .
    11. 孙成佳,靳艳飞,张艳霞. 具有时滞反馈控制的双稳态压电-电磁式俘能器的随机动力学. 动力学与控制学报. 2023(08): 75-81 .
    12. 张野,王军雷. 基于翅片超表面钝体的流致振动俘能特性研究. 力学学报. 2023(10): 2199-2216 . 本站查看
    13. 赵林川,陈泽文,邹鸿翔,孟光,张文明. 机械能量采集动力学调控方法. 力学学报. 2023(10): 2094-2114 . 本站查看
    14. 李支援,吕文博,马小青,周生喜. 一种磁力滑动式翼型颤振能量俘获器. 力学学报. 2023(10): 2146-2155 . 本站查看
    15. 李猛,李孙飚,丁虎. 非线性能量汇胞元减振效率分析. 力学学报. 2023(11): 2614-2623 . 本站查看
    16. 陈晓哲,焦志成,石加联. 一种具有能量俘获自参数摆动力吸振器的设计及参数影响分析. 振动工程学报. 2023(06): 1657-1663 .
    17. 张伟,刘爽,毛佳佳,黎绍佳,曹东兴. 磁耦合式双稳态宽频压电俘能器的设计和俘能特性. 力学学报. 2022(04): 1102-1112 . 本站查看
    18. 周碧柳,靳艳飞. 高斯色噪声和谐波激励共同作用下耦合SD振子的混沌研究. 力学学报. 2022(07): 2030-2040 . 本站查看
    19. 李岩,金亚斌. 超构材料波动功能调控研究进展. 复合材料学报. 2022(09): 4259-4273 .
    20. 吴义鹏,李森,蓝春波,周圣鹏,谢维泰,裘进浩,季宏丽. 压电能量俘获结构及其升频转换技术的发展现状. 机械工程学报. 2022(20): 27-45 .

    Other cited types(30)

Catalog

    Article Metrics

    Article views (2539) PDF downloads (812) Cited by(50)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return