Citation: | Liu Hongquan, Chen Shaolin, Sun Xiaoying, Wu Shaoheng. Vulnerability analysis of NPP equipment based on neural network. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(7): 2059-2070. DOI: 10.6052/0459-1879-21-466 |
[1] |
Kennedy RP, Cornell CA, Campbell RD, et al. Probabilistic seismic safety study of an existing nuclear power plant. Nuclear Engineering and Design, 1980, 59(2): 315-338 doi: 10.1016/0029-5493(80)90203-4
|
[2] |
Kennedy RP, Ravindra MK. Seismic fragilities for nuclear power plant risk studies. Nuclear Engineering and Design, 1984, 79(1): 47-68 doi: 10.1016/0029-5493(84)90188-2
|
[3] |
Vamvatsikos D, Cornell CA. Incremental dynamic analysis. Earthquake Engineering and Structural Dynamics, 2002, 31(3): 491-514 doi: 10.1002/eqe.141
|
[4] |
Vamvatsikos D, Cornell CA. Applied incremental dynamic analysis. Earthquake Spectra, 2004, 20(2): 523-553 doi: 10.1193/1.1737737
|
[5] |
Shinozuka M, Feng MQ, Lee J, et al. Statistical analysis of fragility curves. Journal of Engineering Mechanics, 2000, 126(12): 1224-1231 doi: 10.1061/(ASCE)0733-9399(2000)126:12(1224)
|
[6] |
Zentner I. Numerical computation of fragility curves for NPP equipment. Nuclear Engineering and Design, 2010, 240(6): 1614-1621 doi: 10.1016/j.nucengdes.2010.02.030
|
[7] |
Cornell CA, Jalayer F, Hamburger RO, et al. Probabilistic basis for 2000 SAC federal emergency management agency steel moment frame guidelines. Journal of Structural Engineering, 2002, 128(4): 526-533 doi: 10.1061/(ASCE)0733-9445(2002)128:4(526)
|
[8] |
Zentner I, Humbert N, Ravet S, et al. Numerical methods for seismic fragility analysis of structures and components in nuclear industry application to a reactor coolant system. Georisk Assessment and Management of Risk for Engineered Systems and Geohazards, 2011, 5(2): 99-109 doi: 10.1080/17499511003630512
|
[9] |
ASCE/SEI 4-16. Seismic analysis of safety-related nuclear structures. American Society of Civil Engineers, 2017
|
[10] |
Unnikrishnan VU, Prasad AM, Rao BN. Development of fragility curves using high-dimensional model representation. Earthquake Engineering & Structural Dynamics, 2013, 42: 419-430
|
[11] |
Mangalathu S, Jeon JS, Desroches R. Critical uncertainty parameters influencing seismic performance of bridges using lasso regression. Earthquake Engineering & Structural Dynamics, 2018, 47: 784-801
|
[12] |
Calabrese A, Lai CG. Fragility functions of blockwork wharves using artificial neural networks. Soil Dynamics and Earthquake Engineering, 2013, 52: 88-102 doi: 10.1016/j.soildyn.2013.05.002
|
[13] |
Wang ZY, Zentner I, Zio E. A Bayesian framework for estimating fragility curves based on seismic damage data and numerical simulations by adaptive neural networks. Nuclear Engineering and Design, 2018, 338: 232-246 doi: 10.1016/j.nucengdes.2018.08.016
|
[14] |
Wang ZY, Pedroni N, Zentner I, et al. Seismic fragility analysis with artificial neural networks: Application to nuclear power plant equipment. Engineering Structures, 2018, 162: 213-225 doi: 10.1016/j.engstruct.2018.02.024
|
[15] |
谷音, 郑文婷, 卓卫东. 基于LHS-MC方法的矮塔斜拉桥地震风险概率分析. 工程力学, 2013, 30(8): 96-102, 110 (Gu Yin, Zheng Wenting, Zhuo Weidong. Analysis of seismic risk probability assessment of lower-tower cable-stayed bridge based on LHS-MC method. Engineering Mechanics, 2013, 30(8): 96-102, 110 (in Chinese) doi: 10.6052/j.issn.1000-4750.2012.04.0256
Gu Yin, Zheng Wenting, Zhuo Weidong. Analysis of seismic risk probability assessment of lower-tower cable-stayed bridge based on LHS-MC method. Engineering Mechanics, 2013, 30(8): 96-102 + 110 (in Chinese) doi: 10.6052/j.issn.1000-4750.2012.04.0256
|
[16] |
ASCE/SEI 43-05. Seismic design criteria for structures, systems, and components in nuclear facilities. American Society of Civil Engineers, 2005
|
[17] |
Idriss IM, Sun JI. User's manual for shake91− A computer program for conducting equivalent linear seismic response analyses of horizontally layered soil deposits. Center for Geotechnical Modeling, Department of Civil & Environmental Engineering, UC Davis, 1992
|
[18] |
陈少林, 张娇, 郭琪超等. 非水平成层场地上核电结构时域土–结相互作用分析. 岩土工程学报, 2020, 42(2): 308-316 (Chen Shaolin, Zhang Jiao, Guo Qichao, et al. Time-domain soil-structure interaction analysis of nuclear facilities on non-horizontal layered site. Chinese Journal of Geotechnical Engineering, 2020, 42(2): 308-316 (in Chinese)
Chen Shaolin, Zhang Jiao, Guo Qichao, et al. Time-domain soil-structure interaction analysis of nuclear facilities on non-horizontal layered site. Chinese Journal of Geotechnical Engineering, 2020, 42(2): 308-316(in Chinese)
|
[19] |
陈少林, 陆新宇, 赵宇昕. 考虑基础柔性的土-结动力相互作用分区显-隐式分析算法. 自然灾害学报, 2020, 29(3): 9-19 (Chen Shaolin, Lu Xinyu, Zhao Yuxin. Explicit-implicit algorithm for analysis of three-dimensional soil-foundation-structure dynamic interaction. Journal of Natural Disasters, 2020, 29(3): 9-19 (in Chinese)
Chen Shaolin, Lu Xinyu, Zhao Yuxin. Explicit-implicit algorithm for analysis of three-dimensional soil-foundation-structure dynamic interaction. Journal of Natural Disasters, 2020, 29(3): 9-19(in Chinese)
|
[20] |
陈少林, 郭琪超, 周国良. 核电结构土-结相互作用分析分区混合计算方法. 力学学报, 2020, 52(1): 258-282 (Chen Shaolin, Guo Qichao, Zhou Guoliang. Partitioned hybrid method for soil-structure interaction analysis of nuclear power structure. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 258-282 (in Chinese) doi: 10.6052/0459-1879-19-271
Chen Shaolin, Guo Qichao, Zhou Guoliang. Partitioned hybrid method for soil-structure interaction analysis of nuclear power structure. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 258-282(in Chinese) doi: 10.6052/0459-1879-19-271
|
[21] |
陈少林, 宗娟. 平面波任意角度入射时波动散射问题输入的一种实现方法. 固体力学学报, 2018, 39(1): 80-89 (Chen Shaolin, Zong Juan. Wave input method for three-dimensional wave scattering simulation of an incident wave in an arbitrary direction. Chinese Journal of Solid Mechanics, 2018, 39(1): 80-89 (in Chinese)
Chen Shaolin, Zong Juan. Wave input method for three-dimensional wave scattering simulation of an incident wave in an arbitrary direction. Chinese Journal of Solid Mechanics, 2018, 39(1): 80-89(in Chinese)
|
[22] |
周开利. 神经网络模型及其MATLAB仿真程序设计. 北京: 清华大学出版社, 2005: 69-90
Zhou Kaili. Neural Network Model and MATLAB Simulation Program Design. Beijing: Tsinghua University Press, 2005: 69-90 (in Chinese)
|
[23] |
姚俊. 半偏相关系数的计算公式及其应用. 统计与决策, 2011, 5: 4-7 (Yao Jun. Calculation formula of semi-partial correlation coefficient and its application. Statistics and Decision, 2011, 5: 4-7 (in Chinese)
Yao Jun. Calculation formula of semi-partial correlation coefficient and its application. Statistics and Decision, 2011(5): 4-7(in Chinese)
|
[24] |
Zio E. A study of the bootstrap method for estimating the accuracy of artificial neural networks in predicting nuclear transient processes. IEEE Transactions on Nuclear Science, 2006, 53(3): 1460-1478 doi: 10.1109/TNS.2006.871662
|
[25] |
Chryssolouris G, Lee M, Ramsey A. Confidence interval prediction for neural network models. IEEE Transactions on Neural Networks, 1996, 7(1): 229-232 doi: 10.1109/72.478409
|
[26] |
周国良, 唐晖, 魏超等. 新型压水堆核电厂核岛厂房结构地震反应分析//第22届全国结构工程学术会议论文集第Ⅲ册, 2013
Zhou Guoliang, Tang Hui, Wei Chao, et al. Seismic response analysis of advanced power nuclear island buildings//Proceedings of the 22nd National Structural Engineering Conference Volume III, 2013 (in Chinese)
|
[27] |
Liel AB, Haselton CB, Deierlein GG, et al. Incorporating modeling uncertainties in the assessment of seismic collapse risk of buildings. Structural Safety, 2009, 31(2): 197-211 doi: 10.1016/j.strusafe.2008.06.002
|
[28] |
Mangalathu S, Jeon JS, Desroches R. Critical uncertainty parameters influencing seismic performance of bridges using lasso regression. Earthquake Engineering & Structural Dynamics, 2018, 47: 784-801
|
[29] |
尚昆. 考虑SSI效应的核电厂安全壳及内部结构抗震能力评估. [硕士论文]. 哈尔滨: 哈尔滨工业大学, 2014: 15-17
Shang Kun. Seismic assessment of nuclear power plants containment and internal structure considering SSI. [Master Thesis]. Harbin: Harbin Institute of Technology, 2014: 15-17 (in Chinese)
|
[30] |
王晓磊. 基于场地危险性和目标谱的核电安全壳概率地震风险分析. [博士论文]. 哈尔滨: 哈尔滨工业大学, 2018: 18-38
Wang Xiaolei. Seismic probabilistic risk analysis for nuclear power plant containments based on site-specific hazard and target spectra. [PhD Thesis]. Harbin: Harbin Institute of Technology, 2018: 18-38 (in Chinese)
|
[31] |
纪春玲, 董博. 山东某场地概率地震危险性分析. 地震地磁观测与研究, 2017, 38(4): 53-64 (Ji Chunlin, Dong Bo. Probabilistic seismic hazard analysis of a site in Shandong Province. Seismological and Geomagnetic Observation and Research, 2017, 38(4): 53-64 (in Chinese) doi: 10.3969/j.issn.1003-3246.2017.04.010
Ji Chunlin, Dong Bo. Probabilistic seismic hazard analysis of a site in Shandong Province. Seismological and Geomagnetic Observation and Research, 2017, 38(4): 53-64(in Chinese) doi: 10.3969/j.issn.1003-3246.2017.04.010
|
[32] |
俞言祥, 汪素云. 中国东部和西部地区水平向基岩加速度反应谱衰减关系. 震灾防御技术, 2006, 1(3): 206-217 (Yu Yanxiang, Wang Suyun. Attenuation relations for horizontal peak ground acceleration and response spectrum in eastern and western china. Earthquake Disaster Prevention Technology, 2006, 1(3): 206-217 (in Chinese) doi: 10.3969/j.issn.1673-5722.2006.03.005
Yu Yanxiang, Wang Suyun. Attenuation relations for horizontal peak ground acceleration and response spectrum in eastern and western china. Earthquake Disaster Prevention Technology, 2006, 1(3): 206-217 (in Chinese) doi: 10.3969/j.issn.1673-5722.2006.03.005
|
[33] |
李小军, 侯春林, 戴志军等. 核岛结构设计地基场地及计算基底效应研究. 岩土力学, 2015, 36(8): 8 (Li Xiaojun, Hou Chunlin, Dai Zhijun, et al. Research on the effects of soil layers and bedrock on designing the foundation of nuclear island structure. Geotechnical Mechanics, 2015, 36(8): 8 (in Chinese)
Li Xiaojun, Hou Chunlin, Dai Zhijun, et al. Research on the effects of soil layers and bedrock on designing the foundation of nuclear island structure. Geotechnical Mechanics, 2015, 36(8): 8(in Chinese)
|
[1] | Zhang Yan, Ren Wanlong, Zhang Xuhui, Lu Xiaobing. THE MIXING AND SEGREGATION OF BINARY PARTICLES TRANSPORTATION IN VERTICAL PIPE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(7): 1582-1592. DOI: 10.6052/0459-1879-23-020 |
[2] | Chen Feiguo, Ge Wei. A REVIEW OF SMOOTHED PARTICLE HYDRODYNAMICS FAMILY METHODS FOR MULTIPHASE FLOW[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(9): 2357-2373. DOI: 10.6052/0459-1879-21-270 |
[3] | Qiuzu Yang, Fei Xu, Lu Wang, Yang Yang. AN IMPROVED SPH ALGORITHM FOR LARGE DENSITY RATIOS MULTIPHASE FLOWS BASED ON RIEMANN SOLUTION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 730-742. DOI: 10.6052/0459-1879-18-451 |
[4] | Like Deng, Dongdong Wang, Jiarui Wang, Junchao Wu. A GRADIENT SMOOTHING GALERKIN MESHFREE METHOD FOR THIN PLATE ANALYSIS WITH LINEAR BASIS FUNCTION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 690-702. DOI: 10.6052/0459-1879-19-004 |
[5] | Yang Jianjun, Zheng Jianlong. MESHLESS LOCAL STRONG-WEAK (MLSW) METHOD FOR IRREGULAR DOMAIN PROBLEMS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(3): 659-666. DOI: 10.6052/0459-1879-16-383 |
[6] | Liang Shan, Liu Wei, Yuan Li. AN HLLC SCHEME FOR THE SEVEN-EQUATION MULTIPHASE MODEL AND ITS APPLICATION TO COMPRESSIBLE MULTICOMPONENT FLOW[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(5): 884-895. DOI: 10.6052/0459-1879-12-022 |
[7] | Anisotropic second-order moment method of particles for dense gas-solid flow[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(6): 1034-1041. DOI: 10.6052/0459-1879-2010-6-lxxb2009-424 |
[8] | Kejun Yang, Shuyou Cao, Xingnian Liu. Flow resistance in compound channels and its prediction methods[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(1): 23-31. DOI: 10.6052/0459-1879-2007-1-2006-017 |
[9] | A PARALELL ANALYSIS METHOD FOR FULL COUPLED MULTIPHACE FLOW 1)[J]. Chinese Journal of Theoretical and Applied Mechanics, 1999, 31(3): 276-284. DOI: 10.6052/0459-1879-1999-3-1995-032 |