EI、Scopus 收录
中文核心期刊
Liu Hongquan, Chen Shaolin, Sun Xiaoying, Wu Shaoheng. Vulnerability analysis of NPP equipment based on neural network. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(7): 2059-2070. DOI: 10.6052/0459-1879-21-466
Citation: Liu Hongquan, Chen Shaolin, Sun Xiaoying, Wu Shaoheng. Vulnerability analysis of NPP equipment based on neural network. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(7): 2059-2070. DOI: 10.6052/0459-1879-21-466

VULNERABILITY ANALYSIS OF NPP EQUIPMENT BASED ON NEURAL NETWORK

  • Received Date: September 11, 2021
  • Accepted Date: May 09, 2022
  • Available Online: May 10, 2022
  • The vulnerability analysis is a vital part of the seismic probabilistic risk assessment of nuclear power plants. However, due to the complexity of nuclear power structures and the larger calculation scale, the vulnerability analysis of NPP equipment is very time consuming when considering soil-structure interaction (SSI). In order to develop an efficient vulnerability analysis method, this paper adopts a partition calculation method applied to NPP SSI analysis, and establishes an artificial neural network (ANN) using limited SSI analysis results to substitute the FEM process. Based on the regression method with log-normal assumption and Monte Carlo method to analyze the equipment vulnerability. The ANN numerical simulation includes the following contents. (1) Establish the best ANN model through cross-validation to substitute the FEM process, and the most relevant ground motion parameters are selected as the ANN input based on the semi-partial correlation coefficient. (2) Quantification and investigation of the ANN prediction uncertainty. It includes the aleatory uncertainty caused by the simplification of the seismic inputs and the epistemic uncertainty from the limited size of the training data. (3) Computation of fragility curves with Monte Carlo method and the regression method with log-normal assumption based on the prediction data of ANN model. This paper explores the impact on fragility curves induced by different seismic intensity measures and uncertainty of soil material. Meanwhile, the results verify the basic rationality of the lognormal assumption and provide a possible direction for the vulnerability analysis of NPP equipment.
  • [1]
    Kennedy RP, Cornell CA, Campbell RD, et al. Probabilistic seismic safety study of an existing nuclear power plant. Nuclear Engineering and Design, 1980, 59(2): 315-338 doi: 10.1016/0029-5493(80)90203-4
    [2]
    Kennedy RP, Ravindra MK. Seismic fragilities for nuclear power plant risk studies. Nuclear Engineering and Design, 1984, 79(1): 47-68 doi: 10.1016/0029-5493(84)90188-2
    [3]
    Vamvatsikos D, Cornell CA. Incremental dynamic analysis. Earthquake Engineering and Structural Dynamics, 2002, 31(3): 491-514 doi: 10.1002/eqe.141
    [4]
    Vamvatsikos D, Cornell CA. Applied incremental dynamic analysis. Earthquake Spectra, 2004, 20(2): 523-553 doi: 10.1193/1.1737737
    [5]
    Shinozuka M, Feng MQ, Lee J, et al. Statistical analysis of fragility curves. Journal of Engineering Mechanics, 2000, 126(12): 1224-1231 doi: 10.1061/(ASCE)0733-9399(2000)126:12(1224)
    [6]
    Zentner I. Numerical computation of fragility curves for NPP equipment. Nuclear Engineering and Design, 2010, 240(6): 1614-1621 doi: 10.1016/j.nucengdes.2010.02.030
    [7]
    Cornell CA, Jalayer F, Hamburger RO, et al. Probabilistic basis for 2000 SAC federal emergency management agency steel moment frame guidelines. Journal of Structural Engineering, 2002, 128(4): 526-533 doi: 10.1061/(ASCE)0733-9445(2002)128:4(526)
    [8]
    Zentner I, Humbert N, Ravet S, et al. Numerical methods for seismic fragility analysis of structures and components in nuclear industry application to a reactor coolant system. Georisk Assessment and Management of Risk for Engineered Systems and Geohazards, 2011, 5(2): 99-109 doi: 10.1080/17499511003630512
    [9]
    ASCE/SEI 4-16. Seismic analysis of safety-related nuclear structures. American Society of Civil Engineers, 2017
    [10]
    Unnikrishnan VU, Prasad AM, Rao BN. Development of fragility curves using high-dimensional model representation. Earthquake Engineering & Structural Dynamics, 2013, 42: 419-430
    [11]
    Mangalathu S, Jeon JS, Desroches R. Critical uncertainty parameters influencing seismic performance of bridges using lasso regression. Earthquake Engineering & Structural Dynamics, 2018, 47: 784-801
    [12]
    Calabrese A, Lai CG. Fragility functions of blockwork wharves using artificial neural networks. Soil Dynamics and Earthquake Engineering, 2013, 52: 88-102 doi: 10.1016/j.soildyn.2013.05.002
    [13]
    Wang ZY, Zentner I, Zio E. A Bayesian framework for estimating fragility curves based on seismic damage data and numerical simulations by adaptive neural networks. Nuclear Engineering and Design, 2018, 338: 232-246 doi: 10.1016/j.nucengdes.2018.08.016
    [14]
    Wang ZY, Pedroni N, Zentner I, et al. Seismic fragility analysis with artificial neural networks: Application to nuclear power plant equipment. Engineering Structures, 2018, 162: 213-225 doi: 10.1016/j.engstruct.2018.02.024
    [15]
    谷音, 郑文婷, 卓卫东. 基于LHS-MC方法的矮塔斜拉桥地震风险概率分析. 工程力学, 2013, 30(8): 96-102, 110 (Gu Yin, Zheng Wenting, Zhuo Weidong. Analysis of seismic risk probability assessment of lower-tower cable-stayed bridge based on LHS-MC method. Engineering Mechanics, 2013, 30(8): 96-102, 110 (in Chinese) doi: 10.6052/j.issn.1000-4750.2012.04.0256

    Gu Yin, Zheng Wenting, Zhuo Weidong. Analysis of seismic risk probability assessment of lower-tower cable-stayed bridge based on LHS-MC method. Engineering Mechanics, 2013, 30(8): 96-102 + 110 (in Chinese) doi: 10.6052/j.issn.1000-4750.2012.04.0256
    [16]
    ASCE/SEI 43-05. Seismic design criteria for structures, systems, and components in nuclear facilities. American Society of Civil Engineers, 2005
    [17]
    Idriss IM, Sun JI. User's manual for shake91− A computer program for conducting equivalent linear seismic response analyses of horizontally layered soil deposits. Center for Geotechnical Modeling, Department of Civil & Environmental Engineering, UC Davis, 1992
    [18]
    陈少林, 张娇, 郭琪超等. 非水平成层场地上核电结构时域土–结相互作用分析. 岩土工程学报, 2020, 42(2): 308-316 (Chen Shaolin, Zhang Jiao, Guo Qichao, et al. Time-domain soil-structure interaction analysis of nuclear facilities on non-horizontal layered site. Chinese Journal of Geotechnical Engineering, 2020, 42(2): 308-316 (in Chinese)

    Chen Shaolin, Zhang Jiao, Guo Qichao, et al. Time-domain soil-structure interaction analysis of nuclear facilities on non-horizontal layered site. Chinese Journal of Geotechnical Engineering, 2020, 42(2): 308-316(in Chinese)
    [19]
    陈少林, 陆新宇, 赵宇昕. 考虑基础柔性的土-结动力相互作用分区显-隐式分析算法. 自然灾害学报, 2020, 29(3): 9-19 (Chen Shaolin, Lu Xinyu, Zhao Yuxin. Explicit-implicit algorithm for analysis of three-dimensional soil-foundation-structure dynamic interaction. Journal of Natural Disasters, 2020, 29(3): 9-19 (in Chinese)

    Chen Shaolin, Lu Xinyu, Zhao Yuxin. Explicit-implicit algorithm for analysis of three-dimensional soil-foundation-structure dynamic interaction. Journal of Natural Disasters, 2020, 29(3): 9-19(in Chinese)
    [20]
    陈少林, 郭琪超, 周国良. 核电结构土-结相互作用分析分区混合计算方法. 力学学报, 2020, 52(1): 258-282 (Chen Shaolin, Guo Qichao, Zhou Guoliang. Partitioned hybrid method for soil-structure interaction analysis of nuclear power structure. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 258-282 (in Chinese) doi: 10.6052/0459-1879-19-271

    Chen Shaolin, Guo Qichao, Zhou Guoliang. Partitioned hybrid method for soil-structure interaction analysis of nuclear power structure. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 258-282(in Chinese) doi: 10.6052/0459-1879-19-271
    [21]
    陈少林, 宗娟. 平面波任意角度入射时波动散射问题输入的一种实现方法. 固体力学学报, 2018, 39(1): 80-89 (Chen Shaolin, Zong Juan. Wave input method for three-dimensional wave scattering simulation of an incident wave in an arbitrary direction. Chinese Journal of Solid Mechanics, 2018, 39(1): 80-89 (in Chinese)

    Chen Shaolin, Zong Juan. Wave input method for three-dimensional wave scattering simulation of an incident wave in an arbitrary direction. Chinese Journal of Solid Mechanics, 2018, 39(1): 80-89(in Chinese)
    [22]
    周开利. 神经网络模型及其MATLAB仿真程序设计. 北京: 清华大学出版社, 2005: 69-90

    Zhou Kaili. Neural Network Model and MATLAB Simulation Program Design. Beijing: Tsinghua University Press, 2005: 69-90 (in Chinese)
    [23]
    姚俊. 半偏相关系数的计算公式及其应用. 统计与决策, 2011, 5: 4-7 (Yao Jun. Calculation formula of semi-partial correlation coefficient and its application. Statistics and Decision, 2011, 5: 4-7 (in Chinese)

    Yao Jun. Calculation formula of semi-partial correlation coefficient and its application. Statistics and Decision, 2011(5): 4-7(in Chinese)
    [24]
    Zio E. A study of the bootstrap method for estimating the accuracy of artificial neural networks in predicting nuclear transient processes. IEEE Transactions on Nuclear Science, 2006, 53(3): 1460-1478 doi: 10.1109/TNS.2006.871662
    [25]
    Chryssolouris G, Lee M, Ramsey A. Confidence interval prediction for neural network models. IEEE Transactions on Neural Networks, 1996, 7(1): 229-232 doi: 10.1109/72.478409
    [26]
    周国良, 唐晖, 魏超等. 新型压水堆核电厂核岛厂房结构地震反应分析//第22届全国结构工程学术会议论文集第Ⅲ册, 2013

    Zhou Guoliang, Tang Hui, Wei Chao, et al. Seismic response analysis of advanced power nuclear island buildings//Proceedings of the 22nd National Structural Engineering Conference Volume III, 2013 (in Chinese)
    [27]
    Liel AB, Haselton CB, Deierlein GG, et al. Incorporating modeling uncertainties in the assessment of seismic collapse risk of buildings. Structural Safety, 2009, 31(2): 197-211 doi: 10.1016/j.strusafe.2008.06.002
    [28]
    Mangalathu S, Jeon JS, Desroches R. Critical uncertainty parameters influencing seismic performance of bridges using lasso regression. Earthquake Engineering & Structural Dynamics, 2018, 47: 784-801
    [29]
    尚昆. 考虑SSI效应的核电厂安全壳及内部结构抗震能力评估. [硕士论文]. 哈尔滨: 哈尔滨工业大学, 2014: 15-17

    Shang Kun. Seismic assessment of nuclear power plants containment and internal structure considering SSI. [Master Thesis]. Harbin: Harbin Institute of Technology, 2014: 15-17 (in Chinese)
    [30]
    王晓磊. 基于场地危险性和目标谱的核电安全壳概率地震风险分析. [博士论文]. 哈尔滨: 哈尔滨工业大学, 2018: 18-38

    Wang Xiaolei. Seismic probabilistic risk analysis for nuclear power plant containments based on site-specific hazard and target spectra. [PhD Thesis]. Harbin: Harbin Institute of Technology, 2018: 18-38 (in Chinese)
    [31]
    纪春玲, 董博. 山东某场地概率地震危险性分析. 地震地磁观测与研究, 2017, 38(4): 53-64 (Ji Chunlin, Dong Bo. Probabilistic seismic hazard analysis of a site in Shandong Province. Seismological and Geomagnetic Observation and Research, 2017, 38(4): 53-64 (in Chinese) doi: 10.3969/j.issn.1003-3246.2017.04.010

    Ji Chunlin, Dong Bo. Probabilistic seismic hazard analysis of a site in Shandong Province. Seismological and Geomagnetic Observation and Research, 2017, 38(4): 53-64(in Chinese) doi: 10.3969/j.issn.1003-3246.2017.04.010
    [32]
    俞言祥, 汪素云. 中国东部和西部地区水平向基岩加速度反应谱衰减关系. 震灾防御技术, 2006, 1(3): 206-217 (Yu Yanxiang, Wang Suyun. Attenuation relations for horizontal peak ground acceleration and response spectrum in eastern and western china. Earthquake Disaster Prevention Technology, 2006, 1(3): 206-217 (in Chinese) doi: 10.3969/j.issn.1673-5722.2006.03.005

    Yu Yanxiang, Wang Suyun. Attenuation relations for horizontal peak ground acceleration and response spectrum in eastern and western china. Earthquake Disaster Prevention Technology, 2006, 1(3): 206-217 (in Chinese) doi: 10.3969/j.issn.1673-5722.2006.03.005
    [33]
    李小军, 侯春林, 戴志军等. 核岛结构设计地基场地及计算基底效应研究. 岩土力学, 2015, 36(8): 8 (Li Xiaojun, Hou Chunlin, Dai Zhijun, et al. Research on the effects of soil layers and bedrock on designing the foundation of nuclear island structure. Geotechnical Mechanics, 2015, 36(8): 8 (in Chinese)

    Li Xiaojun, Hou Chunlin, Dai Zhijun, et al. Research on the effects of soil layers and bedrock on designing the foundation of nuclear island structure. Geotechnical Mechanics, 2015, 36(8): 8(in Chinese)
  • Related Articles

    [1]Zhang Yan, Ren Wanlong, Zhang Xuhui, Lu Xiaobing. THE MIXING AND SEGREGATION OF BINARY PARTICLES TRANSPORTATION IN VERTICAL PIPE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(7): 1582-1592. DOI: 10.6052/0459-1879-23-020
    [2]Chen Feiguo, Ge Wei. A REVIEW OF SMOOTHED PARTICLE HYDRODYNAMICS FAMILY METHODS FOR MULTIPHASE FLOW[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(9): 2357-2373. DOI: 10.6052/0459-1879-21-270
    [3]Qiuzu Yang, Fei Xu, Lu Wang, Yang Yang. AN IMPROVED SPH ALGORITHM FOR LARGE DENSITY RATIOS MULTIPHASE FLOWS BASED ON RIEMANN SOLUTION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 730-742. DOI: 10.6052/0459-1879-18-451
    [4]Like Deng, Dongdong Wang, Jiarui Wang, Junchao Wu. A GRADIENT SMOOTHING GALERKIN MESHFREE METHOD FOR THIN PLATE ANALYSIS WITH LINEAR BASIS FUNCTION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 690-702. DOI: 10.6052/0459-1879-19-004
    [5]Yang Jianjun, Zheng Jianlong. MESHLESS LOCAL STRONG-WEAK (MLSW) METHOD FOR IRREGULAR DOMAIN PROBLEMS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(3): 659-666. DOI: 10.6052/0459-1879-16-383
    [6]Liang Shan, Liu Wei, Yuan Li. AN HLLC SCHEME FOR THE SEVEN-EQUATION MULTIPHASE MODEL AND ITS APPLICATION TO COMPRESSIBLE MULTICOMPONENT FLOW[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(5): 884-895. DOI: 10.6052/0459-1879-12-022
    [7]Anisotropic second-order moment method of particles for dense gas-solid flow[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(6): 1034-1041. DOI: 10.6052/0459-1879-2010-6-lxxb2009-424
    [8]Kejun Yang, Shuyou Cao, Xingnian Liu. Flow resistance in compound channels and its prediction methods[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(1): 23-31. DOI: 10.6052/0459-1879-2007-1-2006-017
    [9]A PARALELL ANALYSIS METHOD FOR FULL COUPLED MULTIPHACE FLOW 1)[J]. Chinese Journal of Theoretical and Applied Mechanics, 1999, 31(3): 276-284. DOI: 10.6052/0459-1879-1999-3-1995-032
  • Cited by

    Periodical cited type(10)

    1. 李昊,刘俊,王文华. 基于离散元法的沙漏形FPSO海冰载荷特性研究. 海洋工程. 2025(02): 25-33 .
    2. 吴捷,刘璐,田于逵,季顺迎. 基于DEM-SPH流固耦合的冰区船舶快速性预报. 船舶. 2024(01): 70-83 .
    3. 赵伟航,余朝歌,田于逵,刚旭皓,卢鹏. 模型冰水平圆盘中心加载弯曲强度试验研究. 船舶力学. 2024(08): 1200-1208 .
    4. 曹晶,王刚,吴刚,王峥嵘. 重型破冰船规范研究. 中国造船. 2024(04): 24-40 .
    5. 曹晶,王刚. 极地船舶规范及其主要技术发展. 船舶. 2023(01): 61-71 .
    6. 陈静,柯世堂,李文杰,朱庭瑞,员亦雯,任贺贺. 浅海风-浪-流-海床耦合场非定常时空演化规律及评价指标. 上海交通大学学报. 2023(06): 666-679 .
    7. 孙凯,刘璐,杨海天,季顺迎. 基于船基海冰参数现场测量的极区船舶结构冰激疲劳损伤分析. 中国造船. 2023(03): 223-232 .
    8. 姜思宇. 南北方超深特大型水池工程实践与对比分析. 广东土木与建筑. 2023(10): 81-83 .
    9. SHEN Zhong-xiang,WANG Wen-qing,XU Cheng-yue,LI Hong-bin,JIANG Yin,LIU Ren-wei. Numerical Simulation of Sea Ice and Structure Interaction Using Common Node DEM-SPH Model. China Ocean Engineering. 2023(06): 897-911 .
    10. 巩亮,韩东旭,陈峥,汪道兵,焦开拓,张旭,宇波. 增强型地热系统关键技术研究现状及发展趋势. 天然气工业. 2022(07): 135-159 .

    Other cited types(8)

Catalog

    Article Metrics

    Article views (807) PDF downloads (80) Cited by(18)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return