Citation: | Li Shenfang, Wang Junlei, Wang Zhonglin. Progression on fluid energy harvesting based on triboelectric nanogenerators. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 2910-2927. DOI: 10.6052/0459-1879-21-411 |
[1] |
Wang ZL, Wang AC. On the origin of contact-electrification. Materials Today, 2019, 30: 34-51 doi: 10.1016/j.mattod.2019.05.016
|
[2] |
Wang ZL. From contact-electrification to triboelectric nanogenerators.Reports on Progress in Physics, 2021, 84(9): 096502
|
[3] |
Lin S, Chen X, Wang ZL. Contact electrification at the liquid–solidinterface. Chemical Reviews, 2021, in press, https://doi.org/10.1021/acs.chemrev.1c00176
|
[4] |
Wang ZL. On the first principle theory of nanogenerators from maxwell's equations. Nano Energy, 2020, 68: 104272 doi: 10.1016/j.nanoen.2019.104272
|
[5] |
Lai Z, Wang S, Zhu L, et al. A hybrid piezo-dielectric wind energy harvester for high-performance vortex-induced vibration energy harvesting. Mechanical Systems and Signal Processing, 2021, 150: 107212 doi: 10.1016/j.ymssp.2020.107212
|
[6] |
Li S, Crovetto A, Peng Z, et al. Bi-resonant structure with piezoelectric pvdf films for energy harvesting from random vibration sources at low frequency. Sensors and Actuators A: Physical, 2016, 247: 547-554 doi: 10.1016/j.sna.2016.06.033
|
[7] |
Mairizwan, AR, Satria DW. Optimization of harvesting solar cell energy based on mppt to be applied during the rainy seasonin the tropics. Journal of Physics: Conference Series, 2020, 1481: 012007 doi: 10.1088/1742-6596/1481/1/012007
|
[8] |
Han CG, Qian X, Li Q, et al. Giant thermopower of ionic gelatin near room temperature. Science, 2020, 368(6495): 1091-1098 doi: 10.1126/science.aaz5045
|
[9] |
Zhang L, Dai H, Abdelkefi A, et al. Theoretical modeling, wind tunnel measurements, and realistic environment testing of galloping-based electromagnetic energy harvesters. Applied Energy, 2019, 254: 113737 doi: 10.1016/j.apenergy.2019.113737
|
[10] |
Javed U, Abdelkefi A. Characteristics and comparative analysis of piezoelectric-electromagnetic energy harvesters from vortex-induced oscillations. Nonlinear Dynamics, 2019, 95(4): 3309-3333 doi: 10.1007/s11071-018-04757-x
|
[11] |
Lu Z, Wen Q, He X, et al. A flutter-based electromagnetic wind energy harvester: Theory and experiments. Applied Sciences, 2019, 9(22): 4823 doi: 10.3390/app9224823
|
[12] |
Le HD, Kwon SD. An electromagnetic galloping energy harvester with double magnet design. Applied Physics Letters, 2019, 115(13): 133901 doi: 10.1063/1.5118271
|
[13] |
Khan FU, Iqbal M. Electromagnetic bridge energy harvester utilizing bridge’s vibrations and ambient wind for wireless sensor node application. Journal of Sensors, 2018, 2018: 3849683
|
[14] |
王琼, 黄良沛, 周程峰等. 曲面驰振风能采集器动力学设计与性能研究. 振动工程学报, http://kns.cnki.net/kcms/detail/32.1349.TB.20210611.1101.004.html
Wang Qiong, Huang Liangpei, Zhou Chengfeng, et al. Dynamic design and performance research of curved surface galloping wind energy harvester. Journal of Vibration Engineerin, https://kns.cnki.net /kcms/detail/32.1349.TB.20210611.1101.004.html (in Chinese))
|
[15] |
Sun W, Seok J. Novel galloping-based piezoelectric energy harvester adaptable to external wind velocity. Mechanical Systems and Signal Processing, 2021, 152: 107477 doi: 10.1016/j.ymssp.2020.107477
|
[16] |
Su WJ, Lin WY. Design and analysis of a vortex-induced bi-directional piezoelectric energy harvester. International Journal of Mechanical Sciences, 2020, 173: 105457 doi: 10.1016/j.ijmecsci.2020.105457
|
[17] |
Wang J, Zhou S, Zhang Z, et al. High-performance piezoelectric wind energy harvester with y-shaped attachments. Energy Conversion and Management, 2019, 181: 645-652 doi: 10.1016/j.enconman.2018.12.034
|
[18] |
Jia J, Shan X, Upadrashta D, et al. An asymmetric bending-torsional piezoelectric energy harvester at low wind speed. Energy, 2020, 198: 117287 doi: 10.1016/j.energy.2020.117287
|
[19] |
Zhang J, Fang Z, Shu C, et al. A rotational piezoelectric energy harvester for efficient wind energy harvesting. Sensors and Actuators A:Physical, 2017, 262: 123-129 doi: 10.1016/j.sna.2017.05.027
|
[20] |
Fan FR, Tian ZQ, Wang ZL. Flexible triboelectric generator. Nano Energy, 2012, 1(2): 328-334 doi: 10.1016/j.nanoen.2012.01.004
|
[21] |
Jiang Q, Chen B, Yang Y. Wind-driven triboelectric nanogenerators for scavenging biomechanical energy. Acs Applied Energy Materials, 2018, 1(8): 4269-4276 doi: 10.1021/acsaem.8b00902
|
[22] |
Su Y, Xie G, Xie F, et al. Segmented wind energy harvester based on contact-electrification and as a self-powered flow rate sensor. Chemical Physics Letters, 2016, 653: 96-100 doi: 10.1016/j.cplett.2016.04.080
|
[23] |
Ren X, Fan H, Wang C, et al. Coaxial rotatory-freestanding triboelectric nanogenerator for effective energy scavenging from wind. Smart Materials and Structures, 2018, 27(6): 065016 doi: 10.1088/1361-665X/aabe04
|
[24] |
Ren X, Fan H, Wang C, et al. Wind energy harvester based on coaxial rotatory freestanding triboelectric nanogenerators for self-powered water splitting. Nano Energy, 2018, 50: 562-570 doi: 10.1016/j.nanoen.2018.06.002
|
[25] |
Park SJ, Lee SH, Seol ML, et al. Self-sustainable wind speed sensor system with omni-directional wind based triboelectric generator. Nano Energy, 2019, 55: 115-122 doi: 10.1016/j.nanoen.2018.10.063
|
[26] |
Jiang Q, Chen B, Zhang K, et al. Ag nanoparticle-based triboelectric nanogenerator to scavenge wind energy for a self-charging power unit. Acs Applied Materials & Interfaces, 2017, 9(50): 43716-43723
|
[27] |
Wang J, Tang L, Zhao L, et al. Equivalent circuit representation of a vortex-induced vibration-based energy harvester using a semi-empirical lumped parameter approach. International Journal of Energy Research, 2020, 44(6): 4516-4528 doi: 10.1002/er.5228
|
[28] |
Wang J, Gu S, Zhang C, et al. Hybrid wind energy scavenging by coupling vortex-induced vibrations and galloping. Energy Conversion and Management, 2020, 213: 112835 doi: 10.1016/j.enconman.2020.112835
|
[29] |
练继建, 燕翔, 刘昉等. 流致振动发电的效率. 哈尔滨工程大学学报, 2017, 38(10): 1545-1553 (Lian Jijian, Yan Xiang, Liu Fang, et al. Power generating efficiency of flow-induced vibration. Journal of Harbin Engineering Universit, 2017, 38(10): 1545-1553 (in Chinese)
|
[30] |
Hu J, Pu X, Yang H, et al. A flutter-effect-based triboelectric nanogenerator for breeze energy collection from arbitrary directions and self-powered wind speed sensor. Nano Research, 2019, 12(12): 3018-3023 doi: 10.1007/s12274-019-2545-y
|
[31] |
Rui P, Zhang W, Zhong Y, et al. High-performance cylindrical pendulum shaped triboelectric nanogenerators driven by water wave energy for full-automatic and self-powered wireless hydrological monitoring system. Nano Energy, 2020, 74: 104937 doi: 10.1016/j.nanoen.2020.104937
|
[32] |
Lee JH, Kim S, Kim TY, et al. Water droplet-driven triboelectric nanogenerator with superhydrophobic surfaces. Nano Energy, 2019, 58: 579-584 doi: 10.1016/j.nanoen.2019.01.078
|
[33] |
Liu W, Xu L, Liu G, et al. Network topology optimization of triboelectric nanogenerators for effectively harvesting ocean wave energy. Iscience, 2020, 23(12): 101848 doi: 10.1016/j.isci.2020.101848
|
[34] |
Nam GH, Ahn JH, Lee GH, et al. A new pathway for liquid–solid triboelectric nanogenerator using streaming flow by a novel direct charge transfer. Advanced Energy and Sustainability Research, 2020, 1(1): 2000031 doi: 10.1002/aesr.202000031
|
[35] |
Duan Y, Duan J, Zhao Y, et al. Self-powered low-platinum nanorod alloy monoelectrodes for rain energy harvest. Energy Technology, 2018, 6(9): 1606-1609 doi: 10.1002/ente.201700865
|
[36] |
Wang S, Wang Y, Liu D, et al. A robust and self-powered tilt sensor based on annular liquid-solid interfacing triboelectric nanogenerator for ship attitude sensing. Sensors and Actuators A: Physical, 2021, 317: 112459 doi: 10.1016/j.sna.2020.112459
|
[37] |
Jiang T, Pang H, An J, et al. Robust swing-structured triboelectric nanogenerator for efficient blue energy harvesting. Advanced Energy Materials, 2020, 10(23): 2000064 doi: 10.1002/aenm.202000064
|
[38] |
Helseth LE. A water droplet-powered sensor based on charge transfer to a flow-through front surface electrode. Nano Energy, 2020, 73: 104809 doi: 10.1016/j.nanoen.2020.104809
|
[39] |
Jiang D, Liu G, Li W, et al. A leaf-shaped triboelectric nanogenerator for multiple ambient mechanical energy harvesting. IEEE Transactions on Power Electronics, 2020, 35(1): 25-32 doi: 10.1109/TPEL.2019.2921152
|
[40] |
Zhou L, Liu D, Wang J, et al. Triboelectric nanogenerators: Fundamental physics and potential applications. Friction, 2020, 8(3): 481-506 doi: 10.1007/s40544-020-0390-3
|
[41] |
Xu C, Zi Y, Wang AC, et al. On the electron-transfer mechanism in the contact-electrification effect. Advanced Materials, 2018, 30(15): 1706790 doi: 10.1002/adma.201706790
|
[42] |
Xu C, Zhang B, Wang AC, et al. Contact-electrification between two identical materials: Curvature effect. ACS Nano, 2019, 13(2): 2034-2041
|
[43] |
Wang ZL. On maxwell's displacement current for energy and sensors: The origin of nanogenerators. Materials Today, 2017, 20(2): 74-82 doi: 10.1016/j.mattod.2016.12.001
|
[44] |
Wang ZL. Triboelectric nanogenerators as new energy technology and self-powered sensors – principles, problems and perspectives. Faraday Discussions, 2015, 176: 447-458
|
[45] |
Wang Y, Gao S, Xu W, et al. Nanogenerators with superwetting surfaces for harvesting water/liquid energy. Advanced Functional Materials, 2020, 30(26): 1908252 doi: 10.1002/adfm.201908252
|
[46] |
Lei R, Zhai H, Nie J, et al. Butterfly-inspired triboelectric nanogenerators with spring-assisted linkage structure for water wave energy harvesting. Advanced Materials Technologies, 2019, 4(3): 1800514 doi: 10.1002/admt.201800514
|
[47] |
Yang L, Wang Y, Guo Y, et al. Robust working mechanism of water droplet-driven triboelectric nanogenerator: Triboelectric output versus dynamic motion of water droplet. Advanced Materials Interfaces, 2019, 6(24): 1901547 doi: 10.1002/admi.201901547
|
[48] |
Xia K, Du C, Zhu Z, et al. Sliding-mode triboelectric nanogenerator based on paper and as a self-powered velocity and force sensor. Applied Materials Today, 2018, 13: 190-197 doi: 10.1016/j.apmt.2018.09.005
|
[49] |
Bi M, Wu Z, Wang S, et al. Optimization of structural parameters for rotary freestanding-electret generators and wind energy harvesting. Nano Energy, 2020, 75: 104968 doi: 10.1016/j.nanoen.2020.104968
|
[50] |
Lin Z, Zhang B, Guo H, et al. Super-robust and frequency-multiplied triboelectric nanogenerator for efficient harvesting water and wind energy. Nano Energy, 2019, 64: 103908 doi: 10.1016/j.nanoen.2019.103908
|
[51] |
Cheng P, Guo H, Wen Z, et al. Largely enhanced triboelectric nanogenerator for efficient harvesting of water wave energy by soft contacted structure. Nano Energy, 2019, 57: 432-439 doi: 10.1016/j.nanoen.2018.12.054
|
[52] |
Nie J, Wang Z, Ren Z, et al. Power generation from the interaction of a liquid droplet and a liquid membrane. Nature Communications, 2019, 10: 2264 doi: 10.1038/s41467-019-10232-x
|
[53] |
Rahman MT, Salauddin M, Park JY, et al. A natural wind-driven 3d-printed miniaturized and fully enclosed hybrid nanogenerator using flexible blade structure for subway tunnel applications//20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors, 2019: 1443-1446
|
[54] |
Lin H, He M, Jing Q, et al. Angle-shaped triboelectric nanogenerator for harvesting environmental wind energy. Nano Energy, 2019, 56: 269-276 doi: 10.1016/j.nanoen.2018.11.037
|
[55] |
Zhang Y, Zeng Q, Wu Y, et al. An ultra-durable windmill-like hybrid nanogenerator for steady and efficient harvesting of low-speed wind energy. Nano-Micro Letters, 2020, 12(1): 175 doi: 10.1007/s40820-020-00513-2
|
[56] |
Gao Q, Li Y, Xie Z, et al. Robust triboelectric nanogenerator with ratchet-like wheel-based design for harvesting of environmental energy. Advanced Materials Technologies, 2020, 5(1): 1900801 doi: 10.1002/admt.201900801
|
[57] |
Wang Y, Yu X, Yin M, et al. Gravity triboelectric nanogenerator for the steady harvesting of natural wind energy. Nano Energy, 2021, 82: 105740 doi: 10.1016/j.nanoen.2020.105740
|
[58] |
Liu Y, Liu J, Che L. A high sensitivity self-powered wind speed sensor based on triboelectric nanogenerators (tengs). Sensors (Basel, Switzerland)
|
[59] |
Lee JS, Yong H, Choi YI, et al. Stackable disk-shaped triboelectric nanogenerator to generate energy from omnidirectional wind. International Journal of Precision Engineering and Manufacturing-Green Technology, 2021, in press, https://doi.org/10.1007/s40684-021-00340-9
|
[60] |
Zaw NYW, Roh H, Kim I, et al. Omnidirectional triboelectric nanogenerator operated by weak wind towards a self-powered anemoscope. Micromachines, 2020, 11(4): 414 doi: 10.3390/mi11040414
|
[61] |
Ren Z, Wang Z, Liu Z, et al. Energy harvesting from breeze wind (0.7-6 m s(−1)) using ultra-stretchable triboelectric nanogenerator. Advanced Energy Materials, 2020, 10 (36): 2001770
|
[62] |
Wang J, Geng L, Ding L, et al. The state-of-the-art review on energy harvesting from flow-induced vibrations. Applied Energy, 2020, 267: 114902 doi: 10.1016/j.apenergy.2020.114902
|
[63] |
段松长, 赵西增, 叶洲腾等. 错列角度对双圆柱涡激振动影响的数值模拟研究. 力学学报, 2018, 50(2): 244-253 (Duan Songchang, Zhao Xizeng, Ye Zhouteng, et al. Numerical study of staggered angle on the vortex-induced vibration of two cylinders. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 244-253 (in Chinese)
|
[64] |
Zeng Q, Wu Y, Tang Q, et al. A high-efficient breeze energy harvester utilizing a full-packaged triboelectric nanogenerator based on flow-induced vibration. Nano Energy, 2020, 70: 104524 doi: 10.1016/j.nanoen.2020.104524
|
[65] |
Ren Z, Wang Z, Wang F, et al. Vibration behavior and excitation mechanism of ultra-stretchable triboelectric nanogenerator for wind energy harvesting. Extreme Mechanics Letters, 2021, 45: 101285 doi: 10.1016/j.eml.2021.101285
|
[66] |
Bashir M, Rajendran P, Khan SA. Energy harvesting from aerodynamic instabilities: Current prospect and future trends. IOP Conference Series: Materials Science and Engineering, 2018, 290: 012054 doi: 10.1088/1757-899X/290/1/012054
|
[67] |
Wang Q, Zou HX, Zhao LC, et al. A synergetic hybrid mechanism of piezoelectric and triboelectric for galloping wind energy harvesting. Applied Physics Letters, 2020, 117(4): 043902 doi: 10.1063/5.0014484
|
[68] |
Wen Q, He X, Lu Z, et al. A comprehensive review of miniatured wind energy harvesters. Nano Materials Science, 2021, 3(2): 170-185 doi: 10.1016/j.nanoms.2021.04.001
|
[69] |
Zhao Z, Pu X, Du C, et al. Freestanding flag-type triboelectric nanogenerator for harvesting high-altitude wind energy from arbitrary directions. Acs Nano, 2016, 10(2): 1780-1787 doi: 10.1021/acsnano.5b07157
|
[70] |
Wang Y, Yang E, Chen T, et al. A novel humidity resisting and wind direction adapting flag-type triboelectric nanogenerator for wind energy harvesting and speed sensing. Nano Energy, 2020, 78: 105279 doi: 10.1016/j.nanoen.2020.105279
|
[71] |
夏杨, 彭争春, 张岚斌等. 一种采集风能的多层薄膜颤振混合纳米发电机. 微纳电子技术, 2020, 57(2): 136-141+168 (Xia Yang, Peng Zhengchun, Zhang Lanbin, et al. A multilayer film flutter hybrid nanogenerator for harvesting the wind energy. Micronanoelectronic Technology, 2020, 57(2): 136-141+168 (in Chinese)
|
[72] |
Trung KP, Wang S, Wang Y, et al. A self-powered and low pressure loss gas flowmeter based on fluid-elastic flutter driven triboelectric nanogenerator. Sensors, 2020, 20(3): 729 doi: 10.3390/s20030729
|
[73] |
Wijewardhana KR, Shen TZ, Jayaweera EN, et al. Hybrid nanogenerator and enhancement of water-solid contact electrification using triboelectric charge supplier. Nano Energy, 2018, 52: 402-407 doi: 10.1016/j.nanoen.2018.08.016
|
[74] |
杨恩, 王岩, 王建业等. 基于薄膜拍打型摩擦纳米发电机的风能收集研究. 中国科学:技术科学, 2021: 1-15 (Yang En, Wang Yan, Wang Jianye, et al. Research on a film-flapping triboelectric nanogenerator for wind energy harvesting. Scientia Sinica Technologica, 2021: 1-15 (in Chinese)
|
[75] |
Zhang L, Meng B, Xia Y, et al. Galloping triboelectric nanogenerator for energy harvesting under low wind speed. Nano Energy, 2020, 70: 104477 doi: 10.1016/j.nanoen.2020.104477
|
[76] |
Kim WG, Kim DW, Tcho IW, et al. Triboelectric nanogenerator: Structure, mechanism, and applications. Acs Nano, 2021, 15(1): 258-287 doi: 10.1021/acsnano.0c09803
|
[77] |
Liang X, Liu Z, Feng Y, et al. Spherical triboelectric nanogenerator based on spring-assisted swing structure for effective water wave energy harvesting. nano Energy, 2021, 83: 105836 doi: 10.1016/j.nanoen.2021.105836
|
[78] |
Liu L, Yang X, Zhao L, et al. Nodding duck structure multi-track directional freestanding triboelectric nanogenerator toward low-frequency ocean wave energy harvesting. ACS Nano, 2021, 15(6): 9412-9421 doi: 10.1021/acsnano.1c00345
|
[79] |
Lin ZH, Cheng G, Lin L, et al. Water-solid surface contact electrification and its use for harvesting liquid-wave energy. Angewandte Chemie International Edition, 2013, 52(48): 12545-12549 doi: 10.1002/anie.201307249
|
[80] |
Tao K, Yi H, Yang Y, et al. Origami-inspired electret-based triboelectric generator for biomechanical and ocean wave energy harvesting. Nano Energy, 2020, 67: 104197 doi: 10.1016/j.nanoen.2019.104197
|
[81] |
Liang X, Jiang T, Liu G, et al. Spherical triboelectric nanogenerator integrated with power management module for harvesting multidirectional water wave energy. Energy & Environmental Science, 2020, 13(1): 277-285
|
[82] |
Zhang C, Liu L, Zhou L, et al. Self-powered sensor for quantifying ocean surface water waves based on triboelectric nanogenerator. Acs Nano, 2020, 14(6): 7092-7100 doi: 10.1021/acsnano.0c01827
|
[83] |
Wu Y, Zeng Q, Tang Q, et al. A teeterboard-like hybrid nanogenerator for efficient harvesting of low-frequency ocean wave energy. Nano Energy, 2020, 67: 104205 doi: 10.1016/j.nanoen.2019.104205
|
[84] |
Feng Y, Jiang T, Liang X, et al. Cylindrical triboelectric nanogenerator based on swing structure for efficient harvesting of ultra-low-frequency water wave energy. Applied Physics Reviews, 2020, 7(2): 021401 doi: 10.1063/1.5135734
|
[85] |
Zhong W, Xu L, Zhan F, et al. Dripping channel based liquid triboelectric nanogenerators for energy harvesting and sensing. Acs Nano, 2020, 14(8): 10510-10517 doi: 10.1021/acsnano.0c04413
|
[86] |
Nie S, Guo H, Lu Y, et al. Superhydrophobic cellulose paper-based triboelectric nanogenerator for water drop energy harvesting. Advanced Materials Technologies, 2020, 5(9): 2000454
|
[87] |
Zhang N, Gu H, Lu K, et al. A universal single electrode droplet-based electricity generator (SE-deg) for water kinetic energy harvesting. Nano Energy, 2021, 82: 105735 doi: 10.1016/j.nanoen.2020.105735
|
[88] |
Liu X, Yu A, Qin A, et al. Highly integrated triboelectric nanogenerator for efficiently harvesting raindrop energy. Advanced Materials Technologies, 2019, 4(11): 1900608 doi: 10.1002/admt.201900608
|
[89] |
Yang L, Wang Y, Zhao Z, et al. Particle-laden droplet-driven triboelectric nanogenerator for real-time sediment monitoring using a deep learning method. Acs Applied Materials & Interfaces, 2020, 12(34): 38192-38201
|
[90] |
Chen CY, Tsai CY, Xu MH, et al. A fully encapsulated piezoelectric–triboelectric hybrid nanogenerator for energy harvesting from biomechanical and environmental sources. Express Polymer Letters, 2019, 13(6): 533-542 doi: 10.3144/expresspolymlett.2019.45
|
[91] |
Chandrasekhar A, Vivekananthan V, Kim SJ. A fully packed spheroidal hybrid generator for water wave energy harvesting and self-powered position tracking. Nano Energy, 2020, 69: 104439 doi: 10.1016/j.nanoen.2019.104439
|
[92] |
Fan X, He J, Mu J, et al. Triboelectric-electromagnetic hybrid nanogenerator driven by wind for self-powered wireless transmission in internet of things and self-powered wind speed sensor. Nano Energy, 2020, 68: 104319 doi: 10.1016/j.nanoen.2019.104319
|
[93] |
Rahman MT, Salauddin M, Maharjan P, et al. Natural wind-driven ultra-compact and highly efficient hybridized nanogenerator for self-sustained wireless environmental monitoring system. Nano Energy, 2019, 57: 256-268 doi: 10.1016/j.nanoen.2018.12.052
|
[94] |
Jurado UT, Pu SH, White NM. Grid of hybrid nanogenerators for improving ocean wave impact energy harvesting self-powered applications. Nano Energy, 2020, 72: 104701 doi: 10.1016/j.nanoen.2020.104701
|
[95] |
Mariello M, Fachechi L, Guido F, et al. Multifunctional sub-100 & micro;m thickness flexible piezo/triboelectric hybrid water energy harvester based on biocompatible aln and soft parylene c-pdms-ecoflex(tm). Nano Energy, 2021, 83: 105811 doi: 10.1016/j.nanoen.2021.105811
|
[96] |
Zhao C, Zhang Q, Zhang W, et al. Hybrid piezo/triboelectric nanogenerator for highly efficient and stable rotation energy harvesting. Nano Energy, 2019, 57: 440-449 doi: 10.1016/j.nanoen.2018.12.062
|
[97] |
Kim WJ, Vivekananthan V, Khandelwal G, et al. Encapsulated triboelectric-electromagnetic hybrid generator for a sustainable blue energy harvesting and self-powered oil spill detection. Acs Applied Electronic Materials, 2020, 2(10): 3100-3108 doi: 10.1021/acsaelm.0c00302
|
[98] |
Fang Y, Tang T, Li Y, et al. A high-performance triboelectric-electromagnetic hybrid wind energy harvester based on rotational tapered rollers aiming at outdoor iot applications. iScience, 2021, 24(4): 102300 doi: 10.1016/j.isci.2021.102300
|
[99] |
Roh H, Kim I, Kim D. Ultrathin unified harvesting module capable of generating electrical energy during rainy, windy, and sunny conditions. Nano Energy, 2020, 70: 104515 doi: 10.1016/j.nanoen.2020.104515
|
[100] |
Jiang D, Su Y, Wang K, et al. A triboelectric and pyroelectric hybrid energy harvester for recovering energy from low-grade waste fluids. Nano Energy, 2020, 70: 104459 doi: 10.1016/j.nanoen.2020.104459
|
[101] |
Xu W, Zheng H, Liu Y, et al. A droplet-based electricity generator with high instantaneous power density. Nature, 2020, 578(7795): 392 doi: 10.1038/s41586-020-1985-6
|
[102] |
Zhang Q, Liang Q, Nandakumar DK, et al. Shadow enhanced self-charging power system for wave and solar energy harvesting from the ocean. Nature Communications, 2021, 12(1): 616 doi: 10.1038/s41467-021-20919-9
|
[103] |
Zou H, Zhang Y, Guo L, et al. Quantifying the triboelectric series. Nature communications, 2019, 10: 1427 doi: 10.1038/s41467-019-09461-x
|
[104] |
Diaz A, Felix-Navarro R. A semi-quantitative tribo-electric series for polymeric materials: The influence of chemical structure and properties. Journal of Electrostatics, 2004, 62(4): 277-290 doi: 10.1016/j.elstat.2004.05.005
|
[105] |
Lee JW, Ye BU, Baik JM. Research update: Recent progress in the development of effective dielectrics for high-output triboelectric nanogenerator. APL Materials, 2017, 5(7): 073802 doi: 10.1063/1.4979306
|
[106] |
Nafari A, Sodano HA. Surface morphology effects in a vibration based triboelectric energy harvester. Smart Materials and Structures, 2018, 27(1): 015029 doi: 10.1088/1361-665X/aa9ccb
|
[107] |
Lee JW, Hwang W. Theoretical study of micro/nano roughness effect on water-solid triboelectrification with experimental approach. Nano Energy, 2018, 52: 315-322 doi: 10.1016/j.nanoen.2018.08.008
|
[108] |
Zhou Q, Kim JN, Han KW, et al. Integrated dielectric-electrode layer for triboelectric nanogenerator based on Cu nanowire-mesh hybrid electrode. Nano Energy, 2019, 59: 120-128 doi: 10.1016/j.nanoen.2019.02.022
|
[109] |
Lai YC, Hsiao YC, Wu HM, et al. Waterproof fabric-based multifunctional triboelectric nanogenerator for universally harvesting energy from raindrops, wind, and human motions and as self-powered sensors. Advanced Science, 2019, 6(5): 1801883 doi: 10.1002/advs.201801883
|
[110] |
耿魁伟, 徐志平, 李徐. 基于MoS2/Graphene复合材料的摩擦纳米发电机. 华南理工大学学报(自然科学版), 2020, 48(10): 113-119+128 (Geng Kuiwei, Xu Zhiping, Li Xu. Triboelectric nanogenerator based on MoS2/graphene composite. Journal of South China University of Technology (Natural Science Edition)
|
[111] |
Ye Q, Wu Y, Qi Y, et al. Effects of liquid metal particles on performance of triboelectric nanogenerator with electrospun polyacrylonitrile fiber films. Nano Energy, 2019, 61: 381-388 doi: 10.1016/j.nanoen.2019.04.075
|
[112] |
Wang L, Yang X, Daoud WA. High power-output mechanical energy harvester based on flexible and transparent au nanoparticle-embedded polymer matrix. Nano Energy, 2019, 55: 433-440 doi: 10.1016/j.nanoen.2018.10.030
|
[113] |
Nie J, Ren Z, Xu L, et al. Probing contact-electrification-induced electron and ion transfers at a liquid-solid interface. Advanced Materials, 2020, 32(2): 1905696 doi: 10.1002/adma.201905696
|
[114] |
Cheng X, Tang W, Song Y, et al. Power management and effective energy storage of pulsed output from triboelectric nanogenerator. Nano Energy, 2019, 61: 517-532 doi: 10.1016/j.nanoen.2019.04.096
|
[115] |
Sun W, Wang N, Li J, et al. Humidity-resistant triboelectric nanogenerator and its applications in wind energy harvesting and self-powered cathodic protection. Electrochimica Acta, 2021, 391: 138994 doi: 10.1016/j.electacta.2021.138994
|
[116] |
Xiong J, Luo H, Gao D, et al. Self-restoring, waterproof, tunable microstructural shape memory triboelectric nanogenerator for self-powered water temperature sensor. Nano Energy, 2019, 61: 584-593 doi: 10.1016/j.nanoen.2019.04.089
|
[117] |
Cui X, Zhang H, Cao S, et al. Tube-based triboelectric nanogenerator for self-powered detecting blockage and monitoring air pressure. Nano Energy, 2018, 52: 71-77 doi: 10.1016/j.nanoen.2018.07.037
|
[118] |
Han Q, Ding Z, Sun W, et al. Hybrid triboelectric-electromagnetic generator for self-powered wind speed and direction detection. Sustainable Energy Technologies and Assessments, 2020, 39: 100717 doi: 10.1016/j.seta.2020.100717
|
[119] |
Xu S, Feng Y, Liu Y, et al. Gas-solid two-phase flow-driven triboelectric nanogenerator for wind-sand energy harvesting and self-powered monitoring sensor. Nano Energy, 2021, 85: 106023 doi: 10.1016/j.nanoen.2021.106023
|
[120] |
Hu S, Shi Z, Zheng R, et al. Superhydrophobic liquid-solid contact triboelectric nanogenerator as a droplet sensor for biomedical applications. Acs Applied Materials & Interfaces, 2020, 12(36): 40021-40030
|
[121] |
Chen P, An J, Shu S, et al. Super-durable, low-wear, and high-performance fur-brush triboelectric nanogenerator for wind and water energy harvesting for smart agriculture. Advanced Energy Materials, 2021, 11(9): 2003066 doi: 10.1002/aenm.202003066
|
[122] |
Liu L, Shi Q, Lee C. A novel hybridized blue energy harvester aiming at all-weather iot applications. Nano Energy, 2020, 76: 105052 doi: 10.1016/j.nanoen.2020.105052
|
[1] | Tan Dongguo, Chi Shimin, Ou Xu, Zhou Jiaxi, Wang Kai. SOME ADVANCES IN ENERGY HARVESTING TECHNOLOGY OF NONLINEAR TRIBOELECTRIC NANOGENERATOR[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(9): 2495-2510. DOI: 10.6052/0459-1879-24-158 |
[2] | Zou Hongxiang, Su Changsheng, Zhao Linchuan, Zhang Wenming, Wei Kexiang. RESEARCH PROGRESS OF WAVE ENERGY HARVESTING AND SELF-POWERED MARINE UNMANNED ELECTROMECHANICAL SYSTEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(10): 2115-2131. DOI: 10.6052/0459-1879-23-334 |
[3] | Guo Chongchong, Wu Wenhua, Wu Guodong, Cao Guangming, Lü Baicheng. MULTIBODY DYNAMICAL MODELING AND ANALYSIS OF MARINE NUCLEAR POWER PLATFORM POSITIONING SYSTEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(5): 1443-1455. DOI: 10.6052/0459-1879-21-690 |
[4] | Zhao Linchuan, Zou Hongxiang, Liu Fengrui, Wei Kexiang, Zhang Wenming. HYBRID PIEZOELECTRIC-TRIBOELECTRIC ROTATIONAL ENERGY HARVESTER USING DYNAMIC COORDINATED MODULATION MECHANISM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 2961-2971. DOI: 10.6052/0459-1879-21-410 |
[5] | Zhou Binzhen, Hu Jianjian, Xie Bin, Ding Boyin, Xia Yingkai, Zheng Xiaobo, Lin Zhiliang, Li Ye. RESEARCH PROGRESS IN HYDRODYNAMICS OF WIND-WAVE COMBINED POWER GENERATION SYSTEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1641-1649. DOI: 10.6052/0459-1879-19-202 |
[6] | Jinyang Liu, Jiazhen Hong. Nonlinear formulation for flexible multibody system with large deformation[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(1): 111-119. DOI: 10.6052/0459-1879-2007-1-2006-113 |
[7] | Z.Y. Gao, Tongxi Yu, D. Karagiozova. Finite element simulation on the mechanical properties of MHS materials[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(1): 65-75. DOI: 10.6052/0459-1879-2007-1-2006-198 |
[8] | Approximate Analytical Solution Of The Piecewise-Smooth Nonlinear Systems Of Multi-Degrees-Of-Freedom ------The Self-Excited Vibration Of The Chinese Cultural Relic Dragon Washbasin[J]. Chinese Journal of Theoretical and Applied Mechanics, 2004, 36(3): 373-378. DOI: 10.6052/0459-1879-2004-3-2003-103 |
[9] | 一类刚-柔耦合系统的建模与稳定性研究[J]. Chinese Journal of Theoretical and Applied Mechanics, 1997, 29(4): 439-447. DOI: 10.6052/0459-1879-1997-4-1995-249 |
[10] | 基于变形动力学模型的黏弹性材料本构关系[J]. Chinese Journal of Theoretical and Applied Mechanics, 1993, 25(3): 375-379. DOI: 10.6052/0459-1879-1993-3-1995-655 |
1. |
张旭,朱雨润,李正郁,倪问池,马勇. 带电颗粒阻尼器运动过程与能量收集理论. 微纳电子技术. 2025(02): 7-17 .
![]() | |
2. |
章亚栋. 基于摩擦纳米发电机的俘获风致振动能量分析. 集成电路应用. 2024(02): 406-408 .
![]() | |
3. |
韩鹏,黄桥高,秦登辉,潘光. 基于尾流降阶模型的涡激振动俘能效率优化研究. 清华大学学报(自然科学版). 2024(08): 1391-1400 .
![]() | |
4. |
谭栋国,池实民,欧旭,周加喜,王凯. 非线性摩擦纳米发电俘能技术的若干进展. 力学学报. 2024(09): 2495-2510 .
![]() | |
5. |
马腾浩,王松,韩勤锴,褚福磊. 面向接触分离式摩擦发电机的机电耦合研究. 动力学与控制学报. 2024(09): 62-71 .
![]() | |
6. |
HU DongXu,QIAN Shuo,HOU XiaoJuan,DUAN ZhiGang,NIU LiXin,WU Hui,LIU JianJun,ZHANG Jie,GENG WenPing,MU JiLiang,HE Jian,CHOU XiuJian. A high-performance hybrid wind energy harvester based on a bidirectional acceleration structure. Science China(Technological Sciences). 2024(12): 3766-3776 .
![]() |
|
7. |
张野,王军雷. 基于翅片超表面钝体的流致振动俘能特性研究. 力学学报. 2023(10): 2199-2216 .
![]() | |
8. |
赵林川,陈泽文,邹鸿翔,孟光,张文明. 机械能量采集动力学调控方法. 力学学报. 2023(10): 2094-2114 .
![]() | |
9. |
韩勤锴,高帅,邵卿洋,褚福磊. 摆式摩擦发电机非线性机电耦合建模研究. 力学学报. 2023(10): 2178-2188 .
![]() | |
10. |
邹鸿翔,苏昌胜,赵林川,张文明,魏克湘. 波浪能量采集及自供能海洋无人机电系统研究进展. 力学学报. 2023(10): 2115-2131 .
![]() | |
11. |
邹密,宋旻彦,李微. 应用COMSOL和MATLAB的风能收集型摩擦纳米发电机仿真教学. 实验室研究与探索. 2023(10): 26-29+116 .
![]() | |
12. |
周陇,唐毓婧,贾轶静,李晓敏,邓莹楠. 摩擦纳米发电机性能的优化策略及应用研究进展. 石油化工. 2023(12): 1784-1790 .
![]() | |
13. |
张伟,刘爽,毛佳佳,黎绍佳,曹东兴. 磁耦合式双稳态宽频压电俘能器的设计和俘能特性. 力学学报. 2022(04): 1102-1112 .
![]() | |
14. |
徐鹏,刘建华,谢广明,徐敏义. 基于柔性摩擦纳米发电机的水下仿生胡须传感器研究. 兵工自动化. 2022(12): 20-24 .
![]() |