Citation: | Zou Hongxiang, Guo Dinghua, Gan Chongzao, Tang Shuguang, Yuan Jun, Wei Kexiang, Zhang Wenming. Design and dynamic analysis of magnetic coupling road energy harvesting. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 2941-2949. DOI: 10.6052/0459-1879-21-374 |
[1] |
Mehmood Y, Ahmad F, Yaqoob I, et al. Internet-of-things-based smart cities: Recent advances and challenges. IEEE Communications Magazine, 2017, 55(9): 16-24 doi: 10.1109/MCOM.2017.1600514
|
[2] |
Qian Y, Wu D, Bao W, et al. The internet of things for smart cities: technologies and applications. IEEE Network, 2019, 33(2): 4-5 doi: 10.1109/MNET.2019.8675165
|
[3] |
Pei JZ, Guo FC, Zhang JP, et al. Review and analysis of energy harvesting technologies in roadway transportation. Journal of Cleaner Production, 2021, 288: 125338 doi: 10.1016/j.jclepro.2020.125338
|
[4] |
Dezfooli AS, Nejad FM, Zakeri H, et al. Solar pavement: a new emerging technology. Solar Energy, 2017, 149: 272-284 doi: 10.1016/j.solener.2017.04.016
|
[5] |
Guo Lk, Lu Q. Potentials of piezoelectric and thermoelectric technologies for harvesting energy from pavements. Renewable and Sustainable Energy Reviews, 2017, 72: 761-773
|
[6] |
Pan HY, Qi LF, Zhang ZT, et al. Kinetic energy harvesting technologies for applications in land transportation: a comprehensive review. Applied Energy, 2021, 286: 116518 doi: 10.1016/j.apenergy.2021.116518
|
[7] |
Ma T, Yang HX, Gu WB, et al. Development of walkable photovoltaic floor tiles used for pavement. Energy Conversion and Management, 2019, 183: 764-771 doi: 10.1016/j.enconman.2019.01.035
|
[8] |
Efthymiou C, Santamouris M, Kolokotsa D, et al. Development and testing of photovoltaic pavement for heat island mitigation. Solar Energy, 2016, 130: 148-160 doi: 10.1016/j.solener.2016.01.054
|
[9] |
Liu ZY, Yang AQ, Gao MY, et al. Towards feasibility of photovoltaic road for urban traffic-solar energy estimation using street view image. Journal of Cleaner Production, 2019, 228: 303-318 doi: 10.1016/j.jclepro.2019.04.262
|
[10] |
Gholikhani M, Roshani H, Dessouky S, et al. A critical review of roadway energy harvesting technologies. Applied Energy, 2020, 261: 114388
|
[11] |
Jiang W, Xiao JJ, Yuan DD, et al. Design and experiment of thermoelectric asphalt pavements with power-generation and temperature-reduction functions. Energy and Buildings, 2018, 169: 39-47 doi: 10.1016/j.enbuild.2018.03.049
|
[12] |
Tahami SA, Gholikhani M, Nasouri R, et al. Developing a new thermoelectric approach for energy harvesting from asphalt pavements. Applied Energy, 2019, 238: 786-795 doi: 10.1016/j.apenergy.2019.01.152
|
[13] |
Jiang W, Yuan DD, Xu SD, et al. Energy harvesting from asphalt pavement using thermoelectric technology. Applied Energy, 2017, 205: 941-950 doi: 10.1016/j.apenergy.2017.08.091
|
[14] |
Zhu XY, Yue Y, Li F. A review on thermoelectric energy harvesting from asphalt pavement: configuration, performance and future. Construction and Building Materials, 2019, 228: 116818 doi: 10.1016/j.conbuildmat.2019.116818
|
[15] |
Ahmad S, Abdul Mujeebu M, Farooqi MA. Energy harvesting from pavements and roadways: a comprehensive review of technologies, materials, and challenges. International Journal of Energy Research, 2019, 43(6): 1974-2015 doi: 10.1002/er.4350
|
[16] |
王立安, 赵建昌, 王作伟. 汽车行驶诱发地表振动的解析研究. 力学学报, 2020, 52(5): 1509-1518 (Wang Li’an, Zhao Jianchang, Wang Zuowei. Analytical study on ground vibration induced by moving vehicle. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(5): 1509-1518 (in Chinese) doi: 10.6052/0459-1879-20-033
|
[17] |
Xu XC, Cao DW, Yang HL, et al. Application of piezoelectric transducer in energy harvesting in pavement. International Journal of Pavement Research and Technology, 2018, 11(4): 388-395 doi: 10.1016/j.ijprt.2017.09.011
|
[18] |
Shim H, Roh Y. Design and fabrication of a wideband cymbal transducer for underwater sensor networks. Sensors, 2019, 19(21): 4659 doi: 10.3390/s19214659
|
[19] |
Zameer A, Majeed M, Mirza SM, et al. Bio-inspired heuristics for layer thickness optimization in multilayer piezoelectric transducer for broadband structures. Soft Computing, 2019, 23(10): 3449-3463 doi: 10.1007/s00500-017-3002-z
|
[20] |
Yesner G, Jasim A, Wang H, et al. Energy harvesting and evaluation of a novel piezoelectric bridge transducer. Sensors and Actuators A: Physical, 2019, 285: 348-354 doi: 10.1016/j.sna.2018.11.013
|
[21] |
Wang J, Cai YQ, Liu ZM, et al. Preparation and performance study of a new type of tile transducer for roadway applications. Journal of Intelligent Material Systems and Structures, 2020, 31(17): 2020-2028 doi: 10.1177/1045389X20942571
|
[22] |
Cao Y, Sha A, Liu Z, et al. Energy output of piezoelectric transducers and pavements under simulated traffic load. Journal of Cleaner Production, 2021, 279: 123508 doi: 10.1016/j.jclepro.2020.123508
|
[23] |
Moure A, Izquierdo RMA, Hernández RS, et al. Feasible integration in asphalt of piezoelectric cymbals for vibration energy harvesting. Energy Conversion and Management, 2016, 112: 246-253 doi: 10.1016/j.enconman.2016.01.030
|
[24] |
Wang H, Jasim A, Chen XD. Energy harvesting technologies in roadway and bridge for different applications–a comprehensive review. Applied Energy, 2018, 212: 1083-1094 doi: 10.1016/j.apenergy.2017.12.125
|
[25] |
Thobias T, Padayattil GM, Gopakumar P. Emerging smart methodologies for on-road electrical energy harvesting. IEEE Potentials, 2018, 37(2): 29-34 doi: 10.1109/MPOT.2017.2733618
|
[26] |
Wang LR, Todaria P, Pandey A, et al. An electromagnetic speed bump energy harvester and its interactions with vehicles. IEEE/ASME Transactions on Mechatronics, 2016, 21(4): 1985-1994 doi: 10.1109/TMECH.2016.2546179
|
[27] |
Zhang ZT, Zhang XT, Rasim Y, et al. Design, modelling and practical tests on a high-voltage kinetic energy harvesting (EH) system for a renewable road tunnel based on linear alternators. Applied Energy, 2016, 164: 152-161 doi: 10.1016/j.apenergy.2015.11.096
|
[28] |
Gholikhani M, Nasouri R, Tahami SA, et al. Harvesting kinetic energy from roadway pavement through an electromagnetic speed bump. Applied Energy, 2019, 250: 503-511 doi: 10.1016/j.apenergy.2019.05.060
|
[29] |
Qi LF, Pan HY, Bano S, et al. A high-efficiency road energy harvester based on a chessboard sliding plate using semi-metal friction materials for self-powered applications in road traffic. Energy Conversion and Management, 2018, 165: 748-760 doi: 10.1016/j.enconman.2018.04.003
|
[30] |
Azam A, Ahmed A, Hayat N, et al. Design, fabrication, modelling and analyses of a movable speed bump-based mechanical energy harvester (MEH) for application on road. Energy, 2021, 214: 118894 doi: 10.1016/j.energy.2020.118894
|
[1] | Ma Kai, Du Jingtao, Liu Yang, Chen Ximing. A COMPARATIVE STUDY ON THE TORSIONAL VIBRATION ATTENUATION OF CLOSED-LOOP INTERNAL COMBUSTION ENGINE SHAFTING USING TUNED MASS DAMPER AND NONLINEAR ENERGY SINK[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(1): 236-246. DOI: 10.6052/0459-1879-23-285 |
[2] | Zhao Linchuan, Chen Zewen, Zou Hongxiang, Meng Guang, Zhang Wenming. DYNAMICAL REGULATION METHOD OF MECHANICAL ENERGY HARVESTING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(10): 2094-2114. DOI: 10.6052/0459-1879-23-341 |
[3] | Zhao Linchuan, Zou Hongxiang, Liu Fengrui, Wei Kexiang, Zhang Wenming. HYBRID PIEZOELECTRIC-TRIBOELECTRIC ROTATIONAL ENERGY HARVESTER USING DYNAMIC COORDINATED MODULATION MECHANISM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(11): 2961-2971. DOI: 10.6052/0459-1879-21-410 |
[4] | Chen Ken, Huang Bo, Wang Qing, Wang Gang. STRUCTURE AND TOUGHNESS MODULATION OF A Zr52.5Cu17.9Ni14.6Al10Ti5 METALLIC GLASS BY SURFACE MECHANICAL ATTRITION TREATMENT[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 400-407. DOI: 10.6052/0459-1879-20-030 |
[5] | Du Jianming Guo Xu. Fail-safe optimal design of truss structures based on robust optimization[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(4): 725-730. DOI: 10.6052/0459-1879-2011-4-lxxb2010-460 |
[6] | Zijian Zhang, Min Xu, Shilu Chen. Investigation of model reduction for aeroservoelasticity based on unsteady aerodynamics estimating[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(5): 641-650. DOI: 10.6052/0459-1879-2009-5-2008-223 |
[7] | Z.Y. Gao, Tongxi Yu, D. Karagiozova. Finite element simulation on the mechanical properties of MHS materials[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(1): 65-75. DOI: 10.6052/0459-1879-2007-1-2006-198 |
[8] | THE EQUIVALENT ROBUST POLE ASSIGNMENT IN VIBRATION CONTROL DESIGN[J]. Chinese Journal of Theoretical and Applied Mechanics, 1998, 30(6): 748-753. DOI: 10.6052/0459-1879-1998-6-1995-186 |
[9] | THE CANONICAL HAMILTONIAN REPRESENTATIONS IN SOLID MECHANICS[J]. Chinese Journal of Theoretical and Applied Mechanics, 1996, 28(1): 119-125. DOI: 10.6052/0459-1879-1996-1-1995-311 |
[10] | NONSTIONARY RESPONSE OF LINEAR SYSTEM UNDER NONUNIFORMLY MODULATED RANDOM EXCITION[J]. Chinese Journal of Theoretical and Applied Mechanics, 1996, 28(1): 104-108. DOI: 10.6052/0459-1879-1996-1-1995-308 |