EI、Scopus 收录
中文核心期刊
Yao Wei, Liu Hang, Zhang Zheng, Xiao Yabin, Yue Lianjie. Large eddy simulation of hypersonic combustion based on dynamic zone concept. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(4): 954-974. DOI: 10.6052/0459-1879-21-363
Citation: Yao Wei, Liu Hang, Zhang Zheng, Xiao Yabin, Yue Lianjie. Large eddy simulation of hypersonic combustion based on dynamic zone concept. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(4): 954-974. DOI: 10.6052/0459-1879-21-363

LARGE EDDY SIMULATION OF HYPERSONIC COMBUSTION BASED ON DYNAMIC ZONE CONCEPT

  • Received Date: July 28, 2021
  • Accepted Date: November 03, 2021
  • Available Online: November 04, 2021
  • Based on the concept of dynamic zone partition, improved delayed detached eddy simulation (IDDES) modeling of high-Ma full-scale scramjets with more than 100 million cells was conducted for the integrated internal and external flow fields. A complete dynamic zonal combustion modeling framework was established, including dynamic zone flamelet model (DZFM), zonal dynamic adaptive chemistry (Z-DAC), and zonal in situ adaptive tabulation (Z-ISAT). The fidelity of the zonal modeling framework is preliminarily verified by the 115-million-cell modeling of a benchmark hypersonic combustor named REST, which was designed to operate at Mach 12. Through the idea of local flow-chemistry decoupling within each zone, DZFM not only accurately represents the local turbulence-chemistry interaction but also effectively improves the computational efficiency of turbulent combustion in the whole field. Z-DAC and Z-ISAT can further improve the resolving efficiency of chemical reactions in each zone by dynamically reducing the chemical mechanism and tabulating the thermochemical states. Then based on 125 and 140 million cells, respectively, the characteristics of hydrogen-fueled strut and pylon hypersonic combustors were comparatively analyzed for Mach 10. Both the pylon and strut structures induce obvious boundary layer separation and fore-body recirculation zone, resulting in long pre-combustion regions in front of the injection point in both combustors. Numerical analysis based on the Borghi diagram shows that the diffusion-dominated flame mode widely exists in the current hydrogen-fueled hypersonic combustor, and the bottleneck of efficiency improvement lies in efficient mixing. The pylon combustor has higher jet penetration depth and better near-field mixing, and thus the combustion efficiency of 80% is above the criterion of achieving net thrust. The specific impulse of 1234 s in the pylon combustor is also much higher than the 437 s in the strut combustor. Z-DAC reduces the computational cost of reaction systems in nearly half of the computational domain, especially in the fuel-free regions. Compared with the traditional finite-rate PaSR model, the DZFM model achieves an acceleration ratio of up to 11.
  • [1]
    Marshall L, Bahm C, Corpening G. Overview with results and lessons learned of the x-43 a mach 10 flight//AIAA/CIRA 13 th International Space Planes and Hypersonics Systems and Technologies Conference, 2005
    [2]
    Smart MK, Tetlow MR. Orbital delivery of small payloads using hypersonic airbreathing propulsion. Journal of Spacecraft and Rockets, 2009, 46(1): 117-125 doi: 10.2514/1.38784
    [3]
    Rogers RC, Shih AT, Tsai CY. Scramjet tests in a shock tunnel at flight mach 7, 10, and 15 conditions. AIAA Paper, 2011-3241
    [4]
    Barkmeyer D, Starkey R, Lewis M. Inverse waverider design for inward turning inlets//41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2005
    [5]
    Gai SL. Free piston shock tunnels developments and capabilities. Aerospace, 1992, 29(1): 1-41 doi: 10.1016/0376-0421(92)90002-Y
    [6]
    Chan WYK, Razzaqi SA, Turner JC, et al. Freejet testing of the hifire 7 scramjet flowpath at mach 7.5. Journal of Propulsion and Power, 2018, 34(4): 844-853 doi: 10.2514/1.B36652
    [7]
    Curran D, Wheatley V, Smart M. Investigation of combustion mode control in a mach 8 shape-transitioning scramjet. AIAA Journal, 2019, 57(7): 2977-2988 doi: 10.2514/1.J057999
    [8]
    Suraweera MV, Smart MK. Shock-tunnel experiments with a mach 12 rectangular-to-elliptical shape-transition scramjet at offdesign conditions. Journal of Propulsion and Power, 2009, 25(3): 555-564 doi: 10.2514/1.37946
    [9]
    Doherty LJ, Smart MK, Mee DJ. Experimental testing of an airframe-integrated three-dimensional scramjet at mach 10. AIAA Journal, 2015, 53(11): 3196-3207 doi: 10.2514/1.J053785
    [10]
    Landsberg WO, Wheatley V, Smart MK, et al. Enhanced supersonic combustion targeting combustor length reduction in a mach 12 scramjet. AIAA Journal, 2018, 56(10): 3802-3807 doi: 10.2514/1.J057417
    [11]
    Barth JE. Mixing and combustion enhancement in a mach 12 shape-transitioning scramjet engine. [PHD Thesis]. Brisbane: The University of Queensland, 2014
    [12]
    Wise DJ, Smart MK. Experimental investigation of a three-dimensional scramjet engine at Mach 12//20th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, 2015
    [13]
    Shenoy RR, Drozda TG, Norris AT, et al. Comparison of mixing characteristics for several fuel injectors at Mach 8, 12, and 15 hypervelocity flow conditions//2018 Joint Propulsion Conference, July 2018
    [14]
    Bakos R, Tamagno J, Trucco R, et al. Mixing and combustion studies using discrete orifice injection at hypervelocity flight conditions. Journal of Propulsion and Power, 1992, 8(6): 1290-1296 doi: 10.2514/3.11475
    [15]
    Yao W, Chen L. Large eddy simulation of rest hypersonic combustor based on dynamic zone flamelet model//AIAA Propulsion and Energy 2020 Forum, 2020
    [16]
    Yao W, Wu K, Fan XJ. Influences of domain symmetry on supersonic combustion modeling. Journal of Propulsion and Power, 2019, 35(2): 451-465 doi: 10.2514/1.B37227
    [17]
    Yao W, Lu Y, Wu K, et al. Modeling analysis of an actively cooled scramjet combustor under different kerosene/air ratios. Journal of Propulsion and Power, 2018, 34(4): 975-991 doi: 10.2514/1.B36866
    [18]
    Yao W, Yuan YM, Li XP, et al. Comparative study of elliptic and round scramjet combustors fueled by RP-3. Journal of Propulsion and Power, 2018, 34(3): 772-786 doi: 10.2514/1.B36721
    [19]
    Fan ZQ, Liu WD, Sun MB, et al. Theoretical analysis of flamelet model for supersonic turbulent combustion. Science China Technological Sciences, 2011, 55(1): 193-205
    [20]
    孙明波, 范周琴, 梁剑寒等. 部分预混超声速燃烧火焰面模式研究综述. 力学进展, 2010, 40(6): 634-641 (Sun Mingbo, Fan Zhouqin, Liang Jianhan, et al. Evalutaion of partially permixed flamelet approach in supersonic combustion. Anvances in Mechanics, 2010, 40(6): 634-641 (in Chinese) doi: 10.6052/1000-0992-2010-6-lxjzJ2009-127
    [21]
    Davidenko D, Gökalp I, Dufour E, et al. Numerical simulation of hydrogen supersonic combustion and validation of computational approach//12th AIAA International Space Planes and Hypersonic Systems and Technologies, 2003
    [22]
    Golovitchev VI, Nordin N, Jarnicki R, et al. 3-D diesel spray simulations using a new detailed chemistry turbulent combustion model. SAE Technical Paper, 2000
    [23]
    Magnussen B. On the structure of turbulence and a generalized eddy dissipation concept for chemical reaction in turbulent flow//19th Aerospace Sciences Meeting, 1981
    [24]
    Legiery JP, Poinsot T, Veynante D. Dynamically thickened flame LES model for premixed and non-premixed turbulent combustion//Proceedings of the 2000 Summer Program, 2000: 157-168
    [25]
    Calhoon W, Menon S. Linear-eddy subgrid model for reacting large-eddy simulations - heat release effects//35th Aerospace Sciences Meeting and Exhibit. American Institute of Aeronautics and Astronautics, 1997
    [26]
    Peters N. Laminar flamelet concepts in turbulent combustion//21st Symposium (International) on Combustion, 1986: 1231-1250
    [27]
    Bray K. Laminar flamelets in turbulent combustion modeling. Combustion Science and Technology, 2016, 188(9): 1372-1375 doi: 10.1080/00102202.2016.1195819
    [28]
    Cook DJ, Pitsch H, Chen JH, et al. Flamelet-based modeling of auto-ignition with thermal inhomogeneities for application to hcci engines. Proceedings of the Combustion Institute, 2007, 31(2): 2903-2911 doi: 10.1016/j.proci.2006.07.252
    [29]
    Klimenkoa AY, Bilger RW. Conditional momen closure for turbulent combustion. Progress in Energy and Combustion Science, 1999, 25: 595-687 doi: 10.1016/S0360-1285(99)00006-4
    [30]
    Ramanujachari V, Balakrishna S. Probability density function approach to non-premixed turbulent flames. Indian Journal of Pure and Applied Mathematics, 2000, 31: 1339-1351
    [31]
    Huang C, Lipatnikov AN. Comparison of presumed PDF models of turbulent flames. Journal of Combustion, 2012, 2012: 1-15
    [32]
    Pope SB. PDF methods for turbulent reactive flows. Progress in Energy and Combustion Science, 1985, 11: 119-192 doi: 10.1016/0360-1285(85)90002-4
    [33]
    Pierce CD, Moin P. Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion. Journal of Fluid Mechanics, 2004, 504: 73-97 doi: 10.1017/S0022112004008213
    [34]
    Williams FA. Turbulent combustion//The Mathematics of Combustion, 1985, doi: 10.1137/1.9781611971064.Ch3
    [35]
    Oijen JAV, Goey LPHD. Modelling of premixed laminar flames using flamelet-generated manifolds. Combustion Science and Technology, 2000, 161(1): 113-137 doi: 10.1080/00102200008935814
    [36]
    Kundu P, Pei Y, Wang M, et al. Evaluation of turbulence-chemistry interaction under diesel engine conditions with multi-flamelet rif model. Atomization and Sprays, 2014, 24: 779-800 doi: 10.1615/AtomizSpr.2014010506
    [37]
    Pitsch H, Barths H, Peters N. Three-dimensional modeling of nox and soot formation in di-diesel engines using detailed chemistry based on the interactive flamelet approach//International Fall Fuels & Lubricants Meeting& Exposition, San Antonio, Texas, 1996
    [38]
    刘昆, 张育林. 液体火箭发动机燃烧室的一种分区模型. 航空动力学报, 2002, 17(1): 135-139 (Liu Kun, Zhang Yulin. An innovative partition model of liquid rocket engine comubsution chambers. Journal of Aerospace Power, 2002, 17(1): 135-139 (in Chinese) doi: 10.3969/j.issn.1000-8055.2002.01.025
    [39]
    Ge HW, Juneja H, Shi Y, et al. A two-zone multigrid model for si engine combustion simulation using detailed chemistry. Journal of Combustion, 2010, 2010: 1-12
    [40]
    Saeed K, Stone CR. The modelling of premixed laminar combustion in a closed vessel. Combustion Theory and Modelling, 2006, 8(4): 721-743
    [41]
    Kodavasal J, Keum SH, Babajimopoulos A. An extended multi-zone combustion model for pci simulation. Combustion Theory and Modelling, 2011, 15(6): 893-910 doi: 10.1080/13647830.2011.578663
    [42]
    Men YF, Haskara I, Zhu GM. Multi-zone reaction-based modeling of combustion for multiple-injection diesel engines. International Journal of Engine Research, 2018, 21(6): 1012-1025
    [43]
    Perini F. High-dimensional, unsupervised cell clustering for computationally efficient engine simulations with detailed combustion chemistry. Fuel, 2013, 106: 344-356 doi: 10.1016/j.fuel.2012.11.015
    [44]
    Zhou DZ, Tay KL, Li H, et al. Computational acceleration of multi-dimensional reactive flow modelling using diesel/biodiesel/jet-fuel surrogate mechanisms via a clustered dynamic adaptive chemistry method. Combustion and Flame, 2018, 196: 197-209 doi: 10.1016/j.combustflame.2018.06.008
    [45]
    Dai M, Xuna L, Liang Z. Detailed chemaical micro fluid combustion models for natural gas fueled hcci engines//19th International Conference on Computational Combustion, Stockholm, Sweden, 2017
    [46]
    Raju M, Wang MJ, Dai MH, et al. Acceleration of detailed chemical kinetics using multi-zone modeling for cfd in internal combustion engine simulations. SAE Technical Paper Series, 2012
    [47]
    Ingenito A, Flora M, Bruno C. LES modeling of scramjet combustion//44th AIAA Aerospace Sciences Meeting and Exhibit, 2006
    [48]
    Liang L, Stevens JG, Farrell JT. A dynamic multi-zone partitioning scheme for solving detailed chemical kinetics in reactive flow computations. Combustion Science and Technology, 2009, 181(11): 1345-1371 doi: 10.1080/00102200903190836
    [49]
    Wu H, See YC, Wang Q, et al. A pareto-efficient combustion framework with submodel assignment for predicting complex flame configurations. Combustion and Flame, 2015, 162(11): 4208-4230 doi: 10.1016/j.combustflame.2015.06.021
    [50]
    Wu H, See YC, Wang Q, et al. A fidelity adaptive modeling framework for combustion systems based on model trust-region//53rd AIAA Aerospace Sciences Meeting, 2015
    [51]
    Yao W, Fan XJ. Application of dynamic zone flamelet model to a gh2/go2 rocket combustor//AIAA Propulsion and Energy 2019 Forum, 2019
    [52]
    Cuoci A, Frassoldati A, Faravelli T, et al. Kinetic modeling of soot formation in turbulent nonpremixed flames. Environmental Engineering Science, 2008, 25(10): 1407-1422 doi: 10.1089/ees.2007.0193
    [53]
    Cleary M, Kent J. Modelling of species in hood fires by conditional moment closure. Combustion and Flame, 2005, 143(4): 357-368 doi: 10.1016/j.combustflame.2005.08.013
    [54]
    Young KJ, Moss JB. Modelling sooting turbulent jet flames using an extended flamelet technique. Combustion Science and Technology, 1995, 105(1-3): 33-53 doi: 10.1080/00102209508907738
    [55]
    Thornber B, Bilger RW, Masri AR, et al. An algorithm for LES of premixed compressible flows using the conditional moment closure model. Journal of Computational Physics, 2011, 230(20): 7687-7705 doi: 10.1016/j.jcp.2011.06.024
    [56]
    Schwer DA, Lu P, Green WH. An adaptive chemistry approach to modeling complex kinetics in reacting flows. Combustion and Flame, 2003, 133(4): 451-465 doi: 10.1016/S0010-2180(03)00045-2
    [57]
    Liang L, Stevens JG, Farrell JT. A dynamic adaptive chemistry scheme for reactive flow computations. Proceedings of the Combustion Institute, 2009, 32(1): 527-534 doi: 10.1016/j.proci.2008.05.073
    [58]
    Lu TF, Law CK. Toward accommodating realistic fuel chemistry in large-scale computations. Progress in Energy and Combustion Science, 2009, 35(2): 192-215 doi: 10.1016/j.pecs.2008.10.002
    [59]
    Yao W. Kerosene-fueled supersonic combustion modeling based on skeletal mechanisms. Acta Mechanica Sinica, 2019, 35(6): 1155-1177 doi: 10.1007/s10409-019-00891-w
    [60]
    Lu TF, Law CK. A directed relation graph method for mechanism reduction. Proceedings of the Combustion Institute, 2005, 30(1): 1333-1341 doi: 10.1016/j.proci.2004.08.145
    [61]
    Pepiotdesjardins P, Pitsch H. An efficient error-propagation-based reduction method for large chemical kinetic mechanisms. Combustion and Flame, 2008, 154(1-2): 67-81 doi: 10.1016/j.combustflame.2007.10.020
    [62]
    Pope SB. Computationally efficient implementation of combustion chemistry usingin situadaptive tabulation. Combustion Theory and Modelling, 1997, 1(1): 41-63 doi: 10.1080/713665229
    [63]
    Yang B, Pope SB. Treating chemistry in combustion with detailed mechanisms - in situ adaptive tabulation in principal directions - premixed combustion. Combustion and Flame, 1998, 112: 85-112 doi: 10.1016/S0010-2180(97)81759-2
    [64]
    Liu BJD, Pope SB. The performance ofin situadaptive tabulation in computations of turbulent flames. Combustion Theory and Modelling, 2005, 9(4): 549-568 doi: 10.1080/13647830500307436
    [65]
    肖保国. 碳氢燃料简化动力学模型和当地自适应建表方法在超燃并行计算中的应用. [博士论文]. 中国空气动力研究与发展中心, 2009

    Xiao Baoguo. Implementation of reduced chemical kinetics of hydrocarbon fuels and in situ adaptive tabulation in parallel computations of supersonic combustion. [PhD Thesis]. China Aerodynamics Research and Development Center, 2009 (in Chinese)
    [66]
    Lu LY, Lantz SR, Ren ZY, et al. Computationally efficient implementation of combustion chemistry in parallel PDF calculations. Journal of Computational Physics, 2009, 228(15): 5490-5525 doi: 10.1016/j.jcp.2009.04.037
    [67]
    Yuan YM, Zhang TC, Yao W, et al. Characterization of flame stabilization modes in an ethylene-fueled supersonic combustor using time-resolved CH* chemiluminescence. Proceedings of the Combustion Institute, 2017, 36(2): 2919-2925 doi: 10.1016/j.proci.2016.07.040
    [68]
    Sankaran V, Genin F, Menon S. Subgrid mixing modeling for large eddy simulation of supersonic combustion//42nd AIAA Aerospace Sciences Meeting and Exhibit. American Institute of Aeronautics and Astronautics, 2004
    [69]
    Piomelli U. Large-eddy and direct simulation of turbulent flows//Introduction to Turbulence Modelling, Von Karman Institute, Belgium, 2004
    [70]
    Yao W. On the application of dynamic zone flamelet model to large eddy simulation of supersonic hydrogen flame. International Journal of Hydrogen Energy, 2020, 45(41): 21940-21955 doi: 10.1016/j.ijhydene.2020.05.189
    [71]
    Jones WP, Whitelaw JH. Calculation methods for reacting turbulent flows: A review. Combustion and Flame, 1982, 48: 1-26 doi: 10.1016/0010-2180(82)90112-2
    [72]
    Pierce CD, Moin P. A dynamic model for subgrid-scale variance and dissipation rate of a conserved scalar. Physics of Fluids, 1998, 10(12): 3041-3044 doi: 10.1063/1.869832
    [73]
    Triantafyllidis A, Mastorakos E. Implementation issues of the conditional moment closure model in large eddy simulations. Flow, Turbulence and Combustion, 2009, 84(3): 481-512
    [74]
    Nichols RH. Turbulence models and their application to complex flows. [PhD Thesis]. University of Alabama at Birmingham, 2014
    [75]
    Spalart PR. Detached-eddy simulation. Annual Review of Fluid Mechanics, 2009, 41(1): 181-202 doi: 10.1146/annurev.fluid.010908.165130
    [76]
    Shur ML, Spalart PR, Strelets MK, et al. A hybrid rans-LES approach with delayed-des and wall-modelled LES capabilities. International Journal of Heat and Fluid Flow, 2008, 29(6): 1638-1649 doi: 10.1016/j.ijheatfluidflow.2008.07.001
    [77]
    Spalart PR, Allmaras SR. A one-equation turbulence model for aerodynamic flows. AIAA-92-0439, 1992
    [78]
    Spalart PR, Deck S, Shur ML, et al. A new version of detached-eddy simulation, resistant to ambiguous grid densities. Theoretical and Computational Fluid Dynamics, 2006, 20(3): 181-195 doi: 10.1007/s00162-006-0015-0
    [79]
    McLinden MO, Klein SA, Perkins RA. An extended corresponding states model for the thermal conductivity of refrigerants and refrigerant mixtures. International Journal of Refrigeration, 2000, 23: 43-63 doi: 10.1016/S0140-7007(99)00024-9
    [80]
    Chase MW. Nist-janaf thermochemical tables. (4th ed.). Journal of Physical and Chemical Reference Data, 1998, 9: 1-1952
    [81]
    Kee RJ, Rupley FM, Miller JA. Chemkin-il: A fortran chemical kinetics package for the analysis of gas-phase chemical kinetics. Sandia National Laboratories, 1989
    [82]
    Mathur S, Tondon PK, Saxena SC. Thermal conductivity of binary, ternary and quaternary mixtures of rare gases. Molecular Physics, 1967, 12(6): 569-579 doi: 10.1080/00268976700100731
    [83]
    Weller HG, Tabor G, Jasak H, et al. A tensorial approach to computational continuum mechanics using object-oriented techniques. Computers in Physics, 1998, 12: 620
    [84]
    Lee YC, Yao W, Fan XJ. Low-dissipative hybrid compressible solver designed for large-eddy simulation of supersonic turbulent flows. AIAA Journal, 2018, 56(8): 3086-3096 doi: 10.2514/1.J056404
    [85]
    Chen SS, Yan C, Xiang XH. Effective low-mach number improvement for upwind schemes. Computers & Mathematics with Applications, 2018, 75(10): 3737-3755
    [86]
    Yao W, Wang J, Lu Y, et al. Full-scale detached eddy simulation of kerosene fueled scramjet combustor based on skeletal mechanism//20th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, 2015
    [87]
    Wu K, Zhang P, Yao W, et al. Numerical investigation on flame stabilization in dlr hydrogen supersonic combustor with strut injection. Combustion Science and Technology, 2017, 189(12): 2154-2179 doi: 10.1080/00102202.2017.1365847
    [88]
    Yao W, Lu Y, Li XP, et al. Improved delayed detached eddy simulation of a high-ma active-cooled scramjet combustor based on skeletal kerosene mechanism//52nd AIAA/SAE/ASEE Joint Propulsion Conference, 2016.
    [89]
    Wu K, Yao W, Fan XJ. Development and fidelity evaluation of a skeletal ethylene mechanism under scramjet-relevant conditions. Energy & Fuels, 2017, 31(12): 14296-14305
    [90]
    Gritskevich MS, Garbaruk AV, Schütze J, et al. Development of ddes and iddes formulations for the k-ω shear stress transport model. Flow, Turbulence and Combustion, 2011, 88(3): 431-449
    [91]
    Jachimowski CJ. An analysis of combustion studies in shock expansion tunnels and reflected shock tunnels. NASA Langley Technical Report Server, No. 19920019131, 1998
    [92]
    Saarlas M. Reference temperature method for computing displacement thickness. AIAA Journal, 1964, 2(11): 2056-2057 doi: 10.2514/3.2741
    [93]
    Lu TF, Yoo CS, Chen JH, et al. Three-dimensional direct numerical simulation of a turbulent lifted hydrogen jet flame in heated coflow: A chemical explosive mode analysis. Journal of Fluid Mechanics, 2010, 652: 45-64 doi: 10.1017/S002211201000039X
    [94]
    Wu WT, Piao Y, Xie Q, et al. Flame diagnostics with a conservative representation of chemical explosive mode analysis. AIAA Journal, 2019, 57(4): 1355-1363 doi: 10.2514/1.J057994
    [95]
    Smart MK. How much compression should a scramjet inlet do? AIAA Journal, 2012, 50(3): 610-619
    [96]
    Law CK. Combustion Physics. Cambridge: Cambridge University Press, 2006
    [97]
    Wu K, Contino F, Yao W, et al. On the application of tabulated dynamic adaptive chemistry in ethylene-fueled supersonic combustion. Combustion and Flame, 2018, 197: 265-275 doi: 10.1016/j.combustflame.2018.08.012
    [98]
    Pope SB. Ten questions concerning the large-eddy simulation of turbulent flows. New Journal of Physics, 2004, 6: 35-35 doi: 10.1088/1367-2630/6/1/035
    [99]
    Yao W, Wu K, Fan XJ. Development of skeletal kerosene mechanisms and application to supersonic combustion. Energy & Fuels, 2018, 32(12): 12992-13003
  • Cited by

    Periodical cited type(18)

    1. 崔元凯 ,张欢 . 颗粒间碰撞对槽道湍流中颗粒聚集效应的影响研究. 力学学报. 2024(02): 365-376 . 本站查看
    2. 陈一唯. 原子力显微镜在二维材料领域的应用. 信息记录材料. 2023(01): 45-47+50 .
    3. 操小龙,肖志祥. 组合动力空天飞行器极端服役环境下的关键力学问题. 空天技术. 2023(02): 1-9 .
    4. 张团卫,焦志明,常慧,马胜国,王志华. 高速撞击诱导大梯度纳米结构化高熵合金的力学行为. 科学通报. 2023(24): 3125-3136 .
    5. 李青,涂国华,李婷婷,陈坚强,袁先旭. 高焓流动中的可压缩颗粒求解器(第1部分):考虑多物理效应的点力颗粒两相流理论方程. 空气动力学学报. 2023(08): 71-86 .
    6. 叶想平,南小龙,冯琦杰,周韦,吴凤超,李雪梅,耿华运,胡建波,俞宇颖. 中子辐照和冷轧(预应变)对高纯铝压缩特性的影响. 力学学报. 2023(09): 2068-2074 . 本站查看
    7. 于起峰,尚洋,李璋. 极端条件光测图像技术进展及其空天应用. 国防科技. 2023(05): 1-8 .
    8. 杨绪佳,何宇新,张鑫,杨小敏,王涛,乔力. Nb_3Sn高场复合超导体临界性能力学变形效应的多尺度模拟. 力学学报. 2022(03): 719-731 . 本站查看
    9. 汪恩良,田雨,刘兴超,任志凤,胡胜博,于俊,刘承前,李宇昂. 基于WOA-BP神经网络的超低温冻土抗压强度预测模型研究. 力学学报. 2022(04): 1145-1153 . 本站查看
    10. 王清华,郭伟国,徐丰,高猛,王志浩. 基于Hopkinson杆和人工神经网络的三轴冲击力传感器同步解耦标定方法. 爆炸与冲击. 2022(10): 87-98 .
    11. 章子健,刘振海,张洪武,郑勇刚. 近似不可压软材料动力分析的完全拉格朗日物质点法. 力学学报. 2022(12): 3344-3351 . 本站查看
    12. 姜宗林,刘俊丽,苑朝凯,陈海璇,陆夕云. 超常环境力学领域研究新进展—–《力学学报》极端力学专题研讨会综述报告. 力学学报. 2021(02): 589-599 . 本站查看
    13. 高扬. 原子力显微镜在二维材料力学性能测试中的应用综述. 力学学报. 2021(04): 929-943 . 本站查看
    14. 王嘉楠,伍鲍,何安民,吴凤超,王裴,吴恒安. 强冲击下金属材料动态损伤与破坏的分子动力学模拟研究进展. 高压物理学报. 2021(04): 4-17 .
    15. 李东波,董仓,芦苇,苏梦龙. 基于矿渣粉与氧化石墨烯协同效应的水泥基材料冻融损伤力学性能研究. 应用力学学报. 2021(04): 1431-1440 .
    16. 汪恩良,任志凤,韩红卫,田雨,胡胜博,刘兴超. 超低温冻结黏土单轴抗压力学性质试验研究. 岩土工程学报. 2021(10): 1851-1860 .
    17. 许光映,王晋宝,薛大文. 短脉冲激光加热分数阶导热及其热应力研究. 力学学报. 2020(02): 491-502 . 本站查看
    18. 叶想平,段志伟,俞宇颖,耿华运,李雪梅,胡凌,蔡灵仓,刘仓理. 预应变对中子辐照高纯铝拉伸性能的影响. 力学学报. 2020(03): 797-804 . 本站查看

    Other cited types(15)

Catalog

    Article Metrics

    Article views (849) PDF downloads (175) Cited by(33)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return