Citation: | Zhao Xiaoyu, Xiang Min, Zhang Weihua, Liu Bo, Li Shangzhong. Numerical study on the stability and closure position of ventailated cavity with a supersonic tail jet. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(12): 3298-3309. DOI: 10.6052/0459-1879-21-346 |
[1] |
贾有军, 张胜敏, 尤俊峰等. 固体发动机水下点火尾流变化过程试验研究. 固体火箭技术, 2015, 38(5): 660-678 (Jia Youjun, Zhang Shengmin, You Junfeng, et al. Experimental research on the changing process of underwater ignition wake of solid rocket motor. Journal of Solid Rocket Technology, 2015, 38(5): 660-678 (in Chinese)
|
[2] |
张春, 郁伟, 王宝寿. 水下超声速燃气射流的初期流场特性研究. 兵工学报, 2018, 39(5): 961-968 (Zhang Chun, Yu Wei, Wang baoshou. Research on the initial flow field characteristics of underwater supersonic gas jets. Acta Armamentarii, 2018, 39(5): 961-968 (in Chinese) doi: 10.3969/j.issn.1000-1093.2018.05.016
|
[3] |
Olson BJ, Lele SK. A mechanism for unsteady separation in over-expanded nozzle flow. Phys Fluids, 2013, 25(11): 110809 doi: 10.1063/1.4819349
|
[4] |
Shi HH, Guo Q, Wang Chao, et al. Oscillation flow induced by underwater supersonic gas jets. Shock Waves, 2010, 20(4): 347-352 doi: 10.1007/s00193-010-0270-2
|
[5] |
Shi HH, Wang BY, Dai ZQ. Research on the mechanics of underwater supersonic gas jets. Sci. China Phys. Mech. Astron, 2010, 53: 527-535 doi: 10.1007/s11433-010-0150-x
|
[6] |
Han S, Moon K, Ko S, et al. Feasibility study and demonstration of an underwater labscale hybrid rocket propulsion//53rd AIAA/ SAE/ASEE Joint Propulsion Conference. AIAA. Atlanta, 2017
|
[7] |
唐云龙, 李世鹏, 谢侃等. 有相变的水下超音速燃气射流数值模拟. 哈尔滨工程大学学报, 2016, 37(9): 1237-1243 (Tang Yunlong, Li Shipeng, Xie Kan, et al. Numerical simulation of underwater supersonic gas jets with phase transitions. Journal of Harbin Engineering University, 2016, 37(9): 1237-1243 (in Chinese)
|
[8] |
Fronzeo M, Kinzel M. An investigation of gas jets submerged in water//46th AIAA Fluid Dynamics Conference. AIAA, Washington DC , 2016
|
[9] |
许昊, 王聪, 陆宏志等. 水下超声速气体射流诱导尾空泡实验研. 物理学报, 2018, 67: 014703 (Xu Hao, Wang Cong, Lu Hongzhi, et al. Experimental study on submerged supersonic gaseous jet induced tail cavity. Acta Physica Sinica, 2018, 67: 014703 (in Chinese) doi: 10.7498/aps.67.20171617
|
[10] |
Xiang M, Zhao XY, Zhou HC. Transient dynamic analysis for the submerged gas jet in flowing water. European Journal of Mechanics - B/Fluids, 2021, 85: 351-360 doi: 10.1016/j.euromechflu.2020.09.009
|
[11] |
张孝石, 许昊, 王聪等. 水流冲击超声速气体射流实验研究. 物理学报, 2017, 66: 054702 (Zhang Xiaoshi, Xu Hao, Wang Cong, et al. Experimental study on underwater supersonic gas jets in water flow. Acta Physica Sinica, 2017, 66: 054702 (in Chinese) doi: 10.7498/aps.66.054702
|
[12] |
Zhang XY, Li SP, Yang BY, et al. Flow structures of over-expanded supersonic gaseous jets for deep-water propulsio. Ocean Engineering, 2020, 213: 107611 doi: 10.1016/j.oceaneng.2020.107611
|
[13] |
王晓辉, 张珂, 褚学森等. 水下点火推进尾空泡振荡的研究. 船舶力学, 2020, 24(2): 136-144 (Wang Xiaohui, Zhang Ke, Chu Xuesen, et al. Research on the pressure oscillation process of tail bubble of underwater igniting propulsion. Journal of Ship Mechanics, 2020, 24(2): 136-144 (in Chinese) doi: 10.3969/j.issn.1007-7294.2020.02.002
|
[14] |
Paryshev EV. Approximate mathematical models in high-speed hydrodynamics. Journal of Engineering Mathematics, 2006, 55: 41-64 doi: 10.1007/s10665-005-9026-x
|
[15] |
Karlikov V, Reznichenko N, Khomyakov A, et al. A possible mechanism for the emergence of auto-oscillations in developed artificial cavitation flows and immersed gas jets. Fluid Dynamics, 1987, 22(3): 392-398 doi: 10.1007/BF01051919
|
[16] |
Kinzel M, Money M, Krane M, et al. Jet-supercavity interaction: Insights from CFD//Proceedings of the 9th International Symposium on Cavitation (CAV2015), 2015
|
[17] |
Kirschner I, Moeny M, Krane M, et al. Jet-supercavity interaction: insights from physics analysis//Proceedings of the 9th International Symposium on Cavitation (CAV2015), 2015
|
[18] |
Moeny M, Krane M, Kirschner I, et al. Jet-supercavity interaction: insights from experiments//Proceedings of the 9th International Symposium on Cavitation (CAV2015), 2015
|
[19] |
Kinzel M, Krane M, Kirschner I, et al. A numerical assessment of the interaction of a supercavitating flow with a gas jet. Ocean Engineering, 2017, 136: 304-313 doi: 10.1016/j.oceaneng.2017.03.042
|
[20] |
周后村. 多相可压空化流数值模拟方法研究. [博士论文]. 长沙: 国防科技大学, 2019
Zhou Houcun. Numerical simulation method for multiphase compressible cavitating flow. [PhD Thesis]. Changsha: National University of Defense Technology, 2019 (in Chinese)
|
[21] |
Song C. Pulsation of ventilated cavities. Journal Ship Research, 1962, 5(4): 8-20
|
[22] |
Skidmore G, Lindau J, Brungart T, et al. Finite volume, computational fluid dynamics-based investigation of supercavity pulsations. Journal of Fluids Engineering, 2017, 139: 091301 doi: 10.1115/1.4036596
|
[23] |
Bourlioux A. A coupled level-set volume-of-fluid method for tracking material interfaces//Proceedings 6th Annual Int Symp on Comp. Fluid Dynamics, Lake Tahoe, USA, 1995
|
[24] |
Sussman M, Puckett EG. A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows. J. Comput. Phys., 2000, 162: 301-337 doi: 10.1006/jcph.2000.6537
|
[25] |
Owis FM, Nayfeh AH. Computations of the compressible multiphase flow over the cavitating high-speed torpedo. ASME J. Fluids Eng., 2003, 125: 459-468 doi: 10.1115/1.1568358
|
[26] |
Schauer TJ. An experimental study of a ventilated supercavitating vehicle. [Master Thesis]. University of Minnesota, 2003
|
[27] |
Savchenko YN, Savchenko GY. Gas Flows in Ventilated Supercavities. Supercavitation Springer, 2012: 115-126
|
[28] |
Wu Y, Liu Y, Shao SY, et al. On the internal fow of a ventilated supercavity. J. Fluid Mech., 2019, 62: 1135-1165 doi: 10.1017/jfm.2018.1006
|
[29] |
Logvinovich GV. Hydrodynamics of Flows with Free Boundaries. 1969: 128 (in Russian)
|
[30] |
赵承庆, 姜毅. 气体射流动力学. 北京: 北京理工大学出版社, 1988: 114
Zhao Chenqing, Jiang Yi. Gas Jet Dynamics. Beijing: Beijing University of Technology Press, 1998: 114 (in Chinese)
|
[1] | Liu Yuewu, Fang Huijun, Li Longlong, Ge Tengze, Zheng Taiyi, Liu Danlu, Ding Jiuge. RECENT PROGRESS ON NUMERICAL RESEARCH OF KEY MECHANICAL PROBLEMS DURING UNDERGROUND COAL GASIFICATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(3): 669-685. DOI: 10.6052/0459-1879-22-331 |
[2] | Chen Yilin, Du Jingtao, Cui Haijian, Zhao Yuhao, Liu Yang. PERFORMANCE ANALYSIS AND STABILITY STUDY OF DIFFERENT TYPES OF NONLINEAR VIBRATION ABSORBERS WITH COMBINED STIFFNESS OF HORIZONTAL SPRINGS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(1): 192-202. DOI: 10.6052/0459-1879-22-413 |
[3] | Han Wu, Xiaohui Zeng, Hemu Shi. STABILITY ANALYSIS OF MAGLEV VEHICLE WITH DELAYED POSITION FEEDBACK CONTROL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 550-557. DOI: 10.6052/0459-1879-18-329 |
[4] | Ye Xuemin, Jiang Kai, Shen Lei, Li Chunxi. STABILITY OF ULTRATHIN LIQUID FILM EVOLUTION WITH SURFACTANT[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(5): 681-689. DOI: 10.6052/0459-1879-12-381 |
[5] | Lü Ming, Ning Zhi, Yan Kai, Fu Juan, Song Yunchao, Sun Chunhua. STUDY ON THE STABILITY OF LIQUID JET IN COAXIAL SWIRLING COMPRESSIBLE FLOW UNDER SUPERCAVITATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(3): 323-330. DOI: 10.6052/0459-1879-12-223 |
[6] | Xiangjun Liu, Jian Zhang, Chao Lin. A numerical study on resistance characteristics of flow around two cylinders[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(3): 300-306. DOI: 10.6052/0459-1879-2009-3-2007-494 |
[7] | Qing Shen, Dehua Zhu. Numerical study of the stability of hypersonic wake[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(1): 1-7. DOI: 10.6052/0459-1879-2009-1-2008-249 |
[8] | A STUDY ON THE STABILITY OF GAS LIQUID TWO PHASE VORTEX STREET 1)[J]. Chinese Journal of Theoretical and Applied Mechanics, 1998, 30(2): 138-144. DOI: 10.6052/0459-1879-1998-2-1995-109 |
[9] | NUMERICAL INVESTIGATION OF THE MECHANISM FOR ASYMMETRIC VORTEX FLOWS[J]. Chinese Journal of Theoretical and Applied Mechanics, 1990, 22(5): 513-518. DOI: 10.6052/0459-1879-1990-5-1995-979 |
[10] | NUMERICAL ANALYSIS OF STABILITY FOR REVOLUTIONARY THIN SHELL[J]. Chinese Journal of Theoretical and Applied Mechanics, 1990, 22(1): 110-114. DOI: 10.6052/0459-1879-1990-1-1995-920 |